Van der Waalsova sila jest slaba privlačna sila između dviju molekula koja se javlja zbog interakcije električkih dipola. Može dovesti do stvaranja stabilnih, ali slabo povezanih dimernih molekula ili skupina. Nazvane su po nizozemskom fizičaru Johannesu van der Waalsu (1837.-1923.).
Etilendiamintetraoctena kiselina (C10H16N2O8) ili skraćeno EDTA (ethylenediaminetetraacetic acid) heksadentantni je heksadentatni ligand koji tvori komplekse i s prijelaznim metalima i s metalima glavnih skupina. EDTA se koristi kao dinatrijeva sol zbog slabe topljivosti kiseline. Koordinacijski broj EDTA je 6. Negativni ion EDTA4- okruži metalni ion uspostavljajući koordinativne veze sa svih šest koordinacijskih mjesta (četiri na kisikovom i dva na dušikovom atomu).
EDTA se često koristi kao aditiv deterdžentima. Ona stvara kompleks s kalcijevim i magnezijevim ionima čime se poboljšava moć pranja deterdženta. EDTA se upotrebljava kao stabilizator u proizvodnji hrane i kao antikoagulans za krv u bankama krvi. EDTA je najčešći reagens u kompleksometrijskoj titraciji.
Elektrodijaliza je postupak dijalize ubrzan djelovanjem električnog polja. Dijalizator je podijeljen u tri dijela. Otopina koja se dijalizira teče kroz srednji odjeljak, između dviju polupropusnih membrana za pozitivne i negativne ione. Elektrode su smještene u pokrajnje odjeljke. Pod utjecajem električnog polja pozitivni ioni putovat će prema katodi (negativnoj elektrodi), a negativni ioni prema anodi (pozitivnoj elektrodi) čime se ubrzava putovanje iona kroz membranu. Tijekom dijalize čista voda nakuplja se uz elektrode a između membrana ostaje slana.
Elektroliti su tvari koje rastaljene ili otopljene u vodi provode električnu struju. Taljenjem ili otapanjem disociraju na električki nabijene čestice (ione) koje provode električnu struju. Pri prolazu električne struje dolazi do prijenosa materije. Pozitivno nabijene čestice (kationi) putuju prema negativnom polu (katodi) a negativno nabijene čestice (anioni) putuju prema pozitivnom polu (anodi). Tekući metali obično se ne smatraju elektrolitima. Krute ionske vodiče (npr. natrijev sulfid) također ubrajamo u elektrolite. Ovisno o tome kako provode električnu struju tvari možemo podijeliti na jake elektrolite, slabe elektrolite i neelektrolite.
Granica zapaljivosti je područje koncentracija kod kojeg se smjesa zraka i zapaljivog materijala može nekim izvorom paljenja (iskrenjem, električnim lukom ili zagrijavanjem) zapaliti ili eksplodirati. Ovo područje zapaljivosti se često naziva i područje eksplozivnosti i ograničeno je donjom i gornjom granicom zapaljivosti.
Donja granica zapaljivosti je najniža koncentracija zapaljivih plinova ili para koja u smjesi sa zrakom može dovesti do izgaranja i eksplozije. Gornja granica zapaljivosti je najviša koncentracija zapaljivih plinova ili para koja u smjesi sa zrakom može dovesti do izgaranja i eksplozije.
Najšire područje zapaljivosti imaju acetilen (od 2.8 % do 93 %) i vodik (od 4.6 % do 95 %). U području koncentracije između graničnih vrijednosti doći će do sagorijevanja ili do pojave eksplozije, koja je to slabija što su koncentracije plina bliže donjoj ili gornjoj granici eksplozivnosti.
Pjene su dispergirani plinovi u tekućinama ili čvrstim tvarima. Plinski mjehurići mogu biti različitih veličina od koloidnih do makroskopskih (npr. mjehurići od sapunice). Kruh i spužvasta guma primjer su čvrstih pjena. Tekuće se pjene upotrebljavaju u sredstvima za gašenje požara, kremama za brijanje i sl. Pjene se mogu pripremiti mehaničkim ubacivanjem zraka što se često koristi u prehrambenoj industriji, primjerice pri proizvodnji sladoleda.
Henryjev zakon formulirao je 1803. engleski kemičar William Henry (1775.-1836.). Sadržaj plina otopljenog u tekućini pri određenoj temperaturi upravo je razmjeran parcijalnom tlaku tog plina iznad tekućine. Henryjev zakon vrijedi samo za slabo topljive plinove pri niskim parcijalnim tlakovima.
gdje je pi parcijalni tlak komponente i iznad otopine, xi je molarni udio u otopini a Kx je konstanta karakteristična za dani plin i otapalo.
Staklena elektroda je elektroda osjetljiva na vodikove ione. Sastoji se od staklene membrane, unutarnje referentne elektrode i unutarnje otopine. Može se također prirediti i staklena elektroda osjetljiva na natrijeve ione.
Staklena elektroda ima ekstremno velik električni otpor. Membrana tipične staklene elektrode (debljine od 0.03 mm do 0.1 mm) ima električni otpor od 30 MΩ do 600 MΩ). Aktivitet vodikovih iona u unutrašnjoj otopini je stalan. Površina staklene membrane mora biti hidratizirana da bi djelovala kao pH elektroda. kada se staklena membrana uroni u vodenu otopinu na njenoj površini se formira tanki gel sloj pri čemu dolazi do ionske izmjene između iona natrija u kristalnoj rešetki stakla i vodikovog iona. Ista stvar se dešava i na unutrašnjoj strani membrane.
Najjednostavnije objašnjenje rada staklene membrane je da se staklo ponaša kao slaba kiselina (staklo-H).
Aktivitet vodikovih iona u unutrašnjoj otopini je stalan. Kada se na vanjskoj strani staklene membrane promijeni koncentracija vodikovih iona staklo će se protonirati ili deprotonirati. Razlika pH otopina s unutrašnje i vanjske strane staklene membrane stvara elektromotornu silu proporcionalnu toj razlici.
Visoko fruktozni kukuruzni sirup (HFCS) je uobičajena zamjena za šećer u pićima i hrani. Kukuruzni škrob se hidrolizira do glukoze koja se potom pomoću enzima djelomično prevodi u fruktozu. Ima mnogo vrsta HFCS-a, a broj iza HFCS označava postotak fruktoze u sirupu, pa tako HFCS-55 sadrži 55 % fruktoze i 45 % glukoze. Veća slatkoća od običnog šećera, niža cijena i jednostavnije korištenje glavni su razlozi zašto proizvođači preferiraju upotrebu kukuruznog sirupa s visokim sadržajem fruktoze umjesto šećera.
Generalić, Eni. "Slab dummy etabs." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. 15 Mar. 2025. <https://glossary.periodni.com>.
Glosar
Periodni sustav