Nuklearni reaktori su postrojenja koja su projektirana za proizvodnju električne energije. Lančana reakcija fisibilnog materijala (uranij-235 ili plutonij-239) provodi se kontinuirano i pod kontrolom. Od sekundarnih neutrona samo jedan jedini smije izazvati daljnje cijepanje.
Osnovni dijelovi nuklearnog reaktora jesu:
Nuklearna magnetska rezonancija (NMR) tip je radiofrekventne spektroskopije koji je temeljen na magnetskom polju koje se stvara vrtnjom električki nabijenih atomskih jezgra. To nuklearno magnetsko polje prouzročeno je interakcijom s vrlo velikim (1 T - 5 T) magnetskim poljem instrumenta. NMR tehnika primjenjuje se za proučavanje elektronske gustoće i kemijskih veza i postala je osnovni istraživački alat za određivanje struktura u organskoj kemiji.
Aktinoidi (aktinidi) su smješteni unutar 7. periode u 3. podljusci. Imaju nepopunjene niže f-podljuske te se stoga nazivaju unutrašnji prijelazni elementi ili f-elementima. U skupinu aktinoida spadaju elementi od rednog broja 90 do rednog broja 103, a često se u aktinoide svrstava i aktinij (Ac). U skupinu aktinoida spadaju: torij (Th), protaktinij (Pa), uranij (U), neptunij (Np), plutonij (Pu), amercij (Am), kurij (Cm), berkelij (Bk), kalifornij (Cf), einsteinij (Es), fermij (Fm), mendelevij (Md), nobelij (No) i lawrencij (Lr). Svi poznati izotopi ovih elemenata radioaktivni su. Samo se Th i U u prirodi javljaju u znatnijim količinama. Tragovi Pa, Np i Pu pronađeni su u uranijevim i torijevim rudama a veće količine dobivaju se iz nuklearnih reaktora.
Americij su 1944. godine otkrili Glenn T. Seaborg, Ralph A. James, Stanley G. Thompson i Albert Ghiorso (USA). Ime mu dolazi od engleske riječi za Ameriku. To je sintetski radioaktivni srebrni metal. Otporan je na alkalije. Reagira s kiselinama, zrakom i vodenom parom. Americij je otrovan i radiotoksičan element. Americij nastaje u nuklearnim reaktorima bombardiranjem plutonija-239 neutronima.
Umjetni radioaktivni izotopi nastaju bombardiranjem atoma pomoću akceleratora ili izlaganjem sporim neutronima u nuklearnom reaktoru. Tako se dobivaju izotopi (radionuklidi) koji se ne nalaze u prirodi jer su nestabilni i radioaktivnom pretvorbom prelaze u stabilne izotope. Najvažniji umjetni radioaktivni izotopi jesu izotopi kobalta, fosfora i ugljika.
Radioaktivni izotop kobalta dobiva se bombardiranjem običnog metalnog kobalta neutronima u nuklearnom reaktoru.
Radioaktivni izotop fosfora dobiva se bombardiranjem običnog fosfora deuteronima proizvedenim u ciklotronu.
Radioaktivni izotop ugljika dobiva se u nuklearnom reaktoru bombardiranjem dušika sporim neutronima. On se najviše upotrebljava kao radioaktivni indikator.
Umjetna radioaktivnost je stvaranje, pomoću akceleratora ili u nuklearnom reaktoru, izotopa (radionuklida) koji se ne nalaze u prirodi jer su nestabilni i radioaktivnom pretvorbom prelaze u stabilne izotope.
Berkelij su 1949. godine otkrili Stanley G. Thompson, Albert Ghiorso i Glenn T. Seaborg (USA). Ime je dobio po gradu Berkeley gdje se nalazi Kalifornijsko sveučilište na kojem je otkriven. To je sintetski radioaktivni srebrni metal. Otporan je na alkalije. Reagira s kiselinama, kisikom i vodenom parom. Berkelij nastaje u nuklearnim reaktorima bombardiranjem americija-241 s alfa-česticama.
Berilij su 1828. godine otkrili Friedrich Woehler (Njemačka) i A. B. Bussy (Francuska). Ime mu dolazi od grčkog naziva beryllos za mineral beril. Do 1957. godine u upotrebi je bio i naziv glucinum od grčke riječi glykys što znači sladak, zbog slatkastog okusa njegovih spojeva. To je polutvrdi, srebrno sivi, sjajni metal koji ne reagira s zrakom ili vodom. Otapa se u kloridnoj i sulfatnoj kiselini ali ne i u nitratnoj, bez obzira na njenu koncentraciju. Berilij i njegovi spojevi su jako otrovni, naročito ako su fino usitnjeni. Jako je toksičan i kancerogen ako se udiše ili dođe u kontakt s kožom. Minerali iz kojih se komercijalno dobiva su beril (Be3Al2Si6O18) i bertrandit (Be4[H2Si2O9]). Berilij je visokotehnološki metal. Koristi se kao moderator u nuklearnim reaktorima i za izradu specijalnih legura s aluminijem i bakrom.
Bizmut je 1753. godine otkrio Claude Geofroy (Francuska). Ime mu dolazi od njemačkog naziva Weisse Masse - bijele nakupine što je kasnije prešlo u wismut i bisemutum. To je krhki metal srebrno-ružičasti boje. Stabilan u vodi i na zraku. Otapa se samo u koncentriranoj nitratnoj i vrućoj sulfatnoj kiselini. Toplinska vodljivost mu je najniža od svih metala, osim žive. Slab je vodič struje i ima najveći Hallov efekt od svih metala. Bizmut i njegovi spojevi su otrovni. Glavne rude bizmuta su bizmutov sjajnik (Bi2S3) i bizmutov oker (Bi2O3). Upotrebljava se kao sastojak niskotaljivih legura s olovom, kositrom i kadmijem, za izradu električnih i toplinskih osigurača. Služi kao nosač za uranijevo gorivo u nuklearnom reaktoru.
Kadmij je 1817. godine otkrio Friedrich Stromeyer (Njemačka). Ime je dobio po latinskom - cadmia ili grčkom - kadmenia nazivu za kalaminu (ZnCO3). To je mekani srebrno bijeli sjajni metal koji se lako može prerezati nožem. Stabilan je u zraku pri sobnim temperaturama. Otapa se u kiselinama i to mnogo lakše u oksidirajućim, a ne otapa se u lužinama. Kadmij i otopine njegovih spojeva su toksični. Količina kadmija u Zemljinoj kori je oko tisuću puta manja od količine cinka. Dobiva se kao nusproizvod pri proizvodnji cinka, olova i bakra iz sulfidnih ruda. Upotrebljava se kao prevlaka na željezu, naročito za upotrebu u alkalnim uvjetima. Od kadmija se pripremaju neke niskotaljive legure, izrađuju Ni-Cd baterije a koristi se i u nuklearnim reaktorima jer dobro apsorbira neutrone.
Generalić, Eni. "Nuklearni reaktor." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav