Masne kiseline jesu alifatske monokarboksilne kiseline koje su karakterizirane terminalnom karboksilnom skupinom (R-COOH). Viši članovi ovog niza pojavljuju se u prirodi u obliku estera glicerola (masti) zbog čega se cijela obitelj ovih spojeva naziva masne kiseline. Prirodne masne kiseline obično su građene od 4 do 28 ugljikovih atoma u lancu (obično imaju paran broj) a mogu biti zasićene i nezasićene. Najvažnije zasićene masne kiseline jesu maslačna (C4), laurinska (C12), palmitinska (C16) i stearinska (C18). Od nezasićenih masnih kiselina najčešće se sreću oleinska, linolna i linolenska (sve imaju 18 ugljikovih atoma u lancu).
Fizikalna svojstva masnih kiselina ovise o dužini lanca, stupnju nezasićenosti i razgranatosti lanca. Kiseline s kratkim lancem jesu tekućine oštrog mirisa topljive u vodi. Porastom dužine lanca talište im raste a topljivost u vodi opada. Nezasićene masne kiseline i one s razgranatim lancem imaju niže talište.
Feromagnetčne tvari, unutar određenog temperaturnog područja, zadržavaju magnetska svojstva kada se ukloni vanjsko magnetno polje. Pri običnim temperaturama jedino su željezo, nikal, kobalt i njihove legure feromagnetični. Feromagnetizam nastaje zbog toga što feromagnetične tvari sadrže mala područja (domene) u kojima su magnetski momenti pojedinačnih atoma orijentirani u istom smjeru. U nemagnetiziranom komadu feromagnetičnog materijala magnetski momenti domena orijentirani su proizvoljno. Stavljanjem u magnetsko polje rezultirajući magnetski momenti pojedinih polja orijentiraju se u jednom smjeru, što dovodi do jakog magnetskog efekta. Uklanjanjem vanjskog magnetnog polja ovi materijali i dalje zadržavaju svoj magnetizam jer magnetski momenti pojedinih područja ostaju istosmjerno orijentirani. Povećanjem temperature iznad Curieove temperature (ili Curieove točke) feromagnetični materijali postaju paramagnetični.
Konstanta ravnoteže (K) prvi put se pojavljuje u zakonu o djelovanju masa koji su 1863. formulirali norveški kemičari C.M. Guldberg i P. Waage. Reverzibilna kemijska reakcija prikazana jednadžbom
u ravnoteži je onda kada je brzina napredne reakcije jednaka brzini povratne reakcije.
Konstanta ravnoteže definirana je odnosom ravnotežnih aktiviteta produkata i reaktanata
Kod praktičnih mjerenja često se aktiviteti zamjenjuju koncentracijama
Za reakcije u plinskoj fazi umjesto koncetracija upotrebljavaju se parcijalni tlakovi
Termodinamička konstanta K nema jedinicu, dok jedinica za Kp i Kc ovisi o broju molekula koje se pojavljuju u stehiometrijskoj jednadžbi (a, b, c i d).
Veličina konstante ravnoteže ovisi o temperaturi. Ako je napredna reakcija egzotermna, konstanta ravnoteže smanjuje se povećanjem temperature. Što je veća konstanta ravnoteže neke kemijske reakcije, to je ravnoteža više pomaknuta na stranu stvaranja produkata reakcije. Položaj uspostavljene ravnoteže može se mijenjati, ali ne i konstanta. Sustav u ravnoteži brani se od promjene tako da nastoji poništiti vanjski utjecaj (Le Chatelierov princip).
Konstanta ravnoteže kemijske reakcije izravno je proporcionalna promjeni standardne Gibbsove slobodne energije
Permeabilnost (lat. permeare, proći kroz) je prolaz ili difuzija plinova, para, tekućina ili čvrstih tvari kroz materijal bez fizikalnog ili kemijskog utjecaja na njega.
Rankineov ciklus je kružni termodinamički ciklus koji se može upotrijebiti za računanje idealanog toplinskog stroja koji koristi ukapljivu paru kao radni fluid.
Parcijalni tlak jedne komponente u smjesi jednak je produktu tlaka zasićene pare čiste komponente pri određenoj temperaturi i njezinog množinskog udjela u smjesi.
Granica zapaljivosti je područje koncentracija kod kojeg se smjesa zraka i zapaljivog materijala može nekim izvorom paljenja (iskrenjem, električnim lukom ili zagrijavanjem) zapaliti ili eksplodirati. Ovo područje zapaljivosti se često naziva i područje eksplozivnosti i ograničeno je donjom i gornjom granicom zapaljivosti.
Donja granica zapaljivosti je najniža koncentracija zapaljivih plinova ili para koja u smjesi sa zrakom može dovesti do izgaranja i eksplozije. Gornja granica zapaljivosti je najviša koncentracija zapaljivih plinova ili para koja u smjesi sa zrakom može dovesti do izgaranja i eksplozije.
Najšire područje zapaljivosti imaju acetilen (od 2.8 % do 93 %) i vodik (od 4.6 % do 95 %). U području koncentracije između graničnih vrijednosti doći će do sagorijevanja ili do pojave eksplozije, koja je to slabija što su koncentracije plina bliže donjoj ili gornjoj granici eksplozivnosti.
Frakcijska destilacija je postupak razdvajanja tekućina bliskog vrelišta. Provodi se u frakcijskim ili rektifikacijskim kolonama na način da se destilacijom nastala parna faza kondenzira, a dobiveni kondenzat ponovo destilira. Postupak se ponavlja više puta. Kako parna faza uvijek sadrži više lakše hlapljive komponente od tekuće faze, na vrhu kolone izlazi para čiste lakše hlapljive komponente a na dnu tekućina teže hlapljive komponente.
Fraschov postupak metoda je dobivanja sumpora iz podzemnih nakupina korištenjem naprave s tri koncentrične cijevi što, ulaze jedna u drugu. Pregrijana vodena para prolazi kroz vanjsku cijev kako bi rastalili sumpor. Kroz unutarnju cijev prolazi zrak i tlači rastaljeni sumpor kroz srednju na površinu. Postupak je dobio ime po amerikancu njemačkog porijekla Hermanu Fraschu (1851.-1914.).
Fugacitet (f) je termodinamička funkcija koja se koristi umjesto parcijalnih tlakova kod reakcija u kojima sudjeluju realni plinovi. Za neku komponentu smjese definiran je kao
gdje je μ kemijski potencijal.
Fugacitet plinova jednak je tlaku koji bi plin imao da je idealan. Fugacitet tekućina i čvrstih tvari jednak je fugacitetu para s kojima su u ravnoteži. Aktivitet je odnos fugaciteta i fugaciteta standardnog stanja.
Generalić, Eni. "Leche mfgm para adultos." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav