Feromagnetčne tvari, unutar određenog temperaturnog područja, zadržavaju magnetska svojstva kada se ukloni vanjsko magnetno polje. Pri običnim temperaturama jedino su željezo, nikal, kobalt i njihove legure feromagnetični. Feromagnetizam nastaje zbog toga što feromagnetične tvari sadrže mala područja (domene) u kojima su magnetski momenti pojedinačnih atoma orijentirani u istom smjeru. U nemagnetiziranom komadu feromagnetičnog materijala magnetski momenti domena orijentirani su proizvoljno. Stavljanjem u magnetsko polje rezultirajući magnetski momenti pojedinih polja orijentiraju se u jednom smjeru, što dovodi do jakog magnetskog efekta. Uklanjanjem vanjskog magnetnog polja ovi materijali i dalje zadržavaju svoj magnetizam jer magnetski momenti pojedinih područja ostaju istosmjerno orijentirani. Povećanjem temperature iznad Curieove temperature (ili Curieove točke) feromagnetični materijali postaju paramagnetični.
Spektar X-zraka je skupina karakterističnih frekvencija za x-zrake ili valnih duljina valova koje proizvode materijali koji su postavljeni kao meta u cijevima u kojima se emitiraju X-zrake. Svaki element ima za sebe karakterističan spektar X-zraka. Postoji i jaka veza između atomskog broja i frekvencije pojedine linije u spektru X-zraka.
Gorivi članci su naprave koje pretvaraju kemijsku u električnu energiju. Razlikuju se od baterija po tome što se proces pretvorbe odvija sve dotle dok se u članak dovode gorivo i oksidirajuće sredstvo, dok je baterija napravljena s ograničenom količinom kemikalija, te je ispražnjena kada sve kemikalije izreagiraju. Gorivi članak je galvanski članak u kojem se na elektrodama odvijaju spontane reakcije. Gorivo (uglavnom vodik) oksidira se na anodi, a oksidans (gotovo uvijek kisik ili zrak) reducira se na katodi.
Neki gorivi članci koriste kao elektrolit vodene otopine, on može biti kiseli ili alkalni, a može biti i ionski vodljiva membrana namočena vodenom otopinom. Ovakvi gorivi članci rade na relativno niskim temperaturama, od sobne temperature do temperature vrenja vode. Neki gorivi članci kao elektrolit koriste taline soli (posebno karbonata) i rade na temperaturi od nekoliko stotina Celzijevih stupnjeva. Drugi koriste ionski vodljive čvrste tvari a rade na temperaturama blizu 1 000 °C.
Gama-zračenje je elektromagnetsko zračenje vrlo kratkih valnih duljina (0.001 nm - 0.1 nm) i vrlo velikih energija od 10-15 J do 10-10 J (od 10 keV to 10 MeV). Gama-zrake se javljaju kao posljedica uspostavljanja energetske ravnoteže u jezgri nakon izbacivanja α ili β-čestica.
Gama-zrake su jako prodorne i apsorbiraju se u gustim materijalima kao što su olovo i uran. Izlaganje gama-zračenju može biti smrtonosno.
Galvanski članak (naponski članak, Voltin članak) jest elektrokemijski članak u kojem se kemijska energija spontano pretvara u električnu. Galvanski članak sastoji se od dva polučlanka, a svaki polučlanak od elektrode uronjene u elektrolit. Elektrolit može biti zajednički za obje elektrode ili različit za svaku elektrodu. Dva elektrolita odvajamo polupropusnom membranom ili ih spajamo elektrolitskim mostom. Ako se elektrode povežu nekim vodičem, elektroni putuju kroz vodič od negativnog pola prema pozitivnom polu.
Danielov članak je primjer galvanskog članka. Sastoji se od bakrene i cinkove elektrode, a kao elektrolit služe otopine bakrova(II) sulfata i cinkova sulfata odijeljene polupropusnom membranom. Kada se elektrode spoje električnim vodičem kroz strujni krug će proteći električna struja. Na negativnom polu (cinkovoj elektrodi) zbiva se proces oksidacije A na pozitivnom polu (bakrenoj elektrodi) zbiva se proces redukcije.
Elektromotornu silu galvanskog članka možemo izračunati iz razlike redoks potencijala tvari koja se reducirala (bakra) i tvari koja se oksidirala (cinka).
Galvanski članak može se shematski prikazati upotrebom okomite crte. Uobičajeno je da se oksidirana vrsta piše s lijeve strane.
Ime je dobila u čast talijanskog znanstvenika i liječnika Luigia Galvania (1737.-1798.).
Geigerov brojač (Geiger Millerov brojač) uređaj je za određivanje i mjerenje ionizirajuće radijacije. Sastoji se od cijevi s plinom pri niskom tlaku (obično argon ili neon s metanom) u kojoj se nalaze cilindrična katoda kroz čiji centar prolazi anoda u obliku tanke žice. Između elektroda narinuta je razlika potencijala od oko 1 000 V. Kroz prikladan otvor (prozor) u cijev ulazi ionizirana čestica ili foton izazivajući nastanak iona a jaka potencijalna razlika će ga usmjeriti na odgovarajuću elektrodu što će izazvati lančanu ionizaciju. Konačni strujni puls može se brojati odgovarajućim elektronskim krugom ili jednostavno preusmjeriti na zvučnik instrumenta. Uređaj je izmislio 1908. njemački fizičar Hans Geiger (1882.-1945.), a 1928. zajedno s W. Mullerom ga je unaprijedio.
Molekule vode sastavljene su od dva atoma vodika i jednog atoma kisika (H2O). Ako se vodikovi atomi u molekuli vode zamijene s deuterijevim atomima nastat će teška voda (D2O). Deuterij se razlikuje od vodika po tome što ima jedan neutron više u jezgri atoma. Udio teške vode u normalnoj vodi je približno 1:5000 i može se koncentrirati elektrolizom. Teška voda ima i više vrelište (101.4 °C) i više ledište (3.6 °C) od normalne vode. Teška voda je 1.11 puta (20/18=1.11) teža od obične vode.
Vodik je 1766. godine otkrio Sir Henry Cavendish (Engleska). Ime mu je dao Lavoisie od grčkih riječi hydro što znači voda i genes što znači tvoriti. To je plin bez boje i mirisa, netopljiv u vodi. Lako difundira kroz sve materijale. Zapaljiv je i pravi eksplozivne smjese u zraku. Zapaljen na zraku gori svijetlim vrućim plamenom dajući vodenu paru. Na povišenoj temperaturi lako se spaja s kisikom, sumporom i halogenim elementima. Procjenjuje se da 90 % svih atoma, odnosno skoro 3/4 mase svemira, otpada na vodik. Sve zvijezde, pa i Sunce, sastavljene su uglavnom od vodika (w>90 %). Vodik se u prirodi rijetko nalazi u elementarnom stanju, samo u višim slojevima atmosfere ili u vulkanskim plinovima. Uglavnom je vezan u spojevima od kojih su najrašireniji voda (H2O), amonijak (NH3) i razni organski spojevi. Čisti vodik se najčešće dobiva elektrolizom vode. Laboratorijski se dobiva reakcijom sulfatne kiseline i elementarnog cinka. Industrijski se dobiva prevođenjem vodene pare preko užarenog koksa. Upotrebljava se za sintezu amonijaka, hidriranje ugljena i ulja, proizvodnju kloridne kiseline i kao redukcijsko sredstvo.
Vodikova veza formira se između atoma vodika i nekog elektronegativnog atoma te se označava isprekidanom crticom H-X---H-B. U molekuli vode dva su vodikova atoma međusobno tako raspoređena da zatvaraj kut od 105°. Svaki atom vodika ima slab pozitivan naboj a kisik negativan. Nastali dipoli uzajamno se elektrostatski privlače. Vodikova veza jaka je otprilike kao jedna desetina σ-veze a dvostruko je duža od nje.
Idealna otopina je otopina kod koje su interakcije između molekula otopljene tvari i između otopljene tvari i otapala jednake. Idealne otopine ponašaju se u skladu s Raoultovim zakonom pri svim temperaturama i koncentracijama, a realne otopine tek pri jako velikim razrjeđenjima.
Generalić, Eni. "Jaki elektrolit." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav