Vaga je instrument za mjerenje mase (ili težine) tijela. Vage s polugom (jednakih ili različitih krakova) najstariji su tip naprava za mjerenje mase kod kojih je na jednom kraju poluge obješena zdjelica na koju se stavlja predmet nepoznate mase a na drugoj zdjelica s odgovarajućom masom utega. Kada je poluga u ravnoteži masa predmeta jednaka je masi utega.
Poluautomatske vage imaju mehanizam za dodavanje i skidanje utega koji znatno olakšava i ubrzava vaganje. Još bolje rješenje su vage s konstantnim opterećenjem krakova koje imaju samo dvije prizme i uvijek jednako opterećenu polugu vage. Kod ovog tipa vaga svi utezi su obješeni na kraku na kojem visi zdjelica a poluga je uravnotežena protuutegom na drugom kraku. Kada se na zdjelicu stavi predmet, sustavom poluga skida se onoliko utega kolika je masa predmeta. Tehničke i analitičke vage su u principu iste konstrukcije a razlikuju se jedino u materijalima i preciznosti izrade.
Moderne elektroničke laboratorijske vage temelje se na mjerenju struje potrebne da se pokretna elektromagnetna zavojnica vrati na svoju nultu poziciju iz koje je pomaknuta zbog opterećivanja vage tijelom čija se masa mjeri.
Prostorno centrirana kubična rešetka (označava se sa bcc ili I), kao i sve ostale rešetke ima po jedan čvor kristalne rešetke u svakom uglu jedinične ćelije plus jedan dodatni čvor u sredini jedinične ćelije. Kristalografski vektori jedinične ćelije su a = b = c a kutovi među njima α=β=γ=90°.
Najjednostavnija kristalna struktura jeste ona koja ima po jedan atom u svakom čvoru jedinične ćelije. Jediničnoj ćeliji pripadaju dva atoma (8×1/8 + 1 = 2), a atomi popunjavaju 68 % volumena kocke. 23 metala kristaliziraju u kubičnom sustavu s prostorno centriranom rešetkom.
Prirast entalpije (ΔH) onaj je dio energije sustava koji se može prevesti u toplinu (Q) uz stalan tlak.
Slobodna energija se može iskoristit za rad. Smanjenje slobodne energije prati bilo koji spontani proces. Slobodna energija ne mijenja se kod sustava u ravnoteži.
Born-Haberovim kružnim procesom izračunava se energija kristalne rešetke. Ova metoda temelji se na termodinamičkom principu da prilikom prijelaza nekog kemijskog sustava iz jednog stanja u drugo ukupna oslobođena (ili apsorbirana) energija ne ovisi o putu reakcije. Za spoj MX energija kristalne rešetke je entalpija reakcije
Toplina nastajanja kristala spoja MX iz elemenata je entalpija reakcije
Zbrajanjem entalpija za svaki korak procesa nastajanja kristala iz elementa može se izračunati energija kristalne rešetke. Ti koraci jesu:
1) Atomizacija metala
2) Atomizacija nemetala
3) Ionizacija metala
Ovo se dobiva iz energije ionizacije.
4) Ionizacija nemetala
Ovo je elektronski afinitet.
5) Nastajanje kristala
Zbrajanjem procesa od 1 do 5 dobijemo
iz čega se može izračunati energija kristalne rešetke ΔHL.
Kalomel elektroda referentna je elektroda temeljena na polureakciji
Tablica: Ovisnost potencijala kalomel elektrode o temperaturi i koncentraciji KCl prema standardnoj vodikovoj elektrodi
potencijal prema SHE / V | |||
---|---|---|---|
t / °C | 0.1 mol dm-3 | 3.5 mol dm-3 | zasić. otop. |
15 | 0.3362 | 0.254 | 0.2511 |
20 | 0.3359 | 0.252 | 0.2479 |
25 | 0.3356 | 0.250 | 0.2444 |
30 | 0.3351 | 0.248 | 0.2411 |
35 | 0.3344 | 0.246 | 0.2376 |
Generalić, Eni. "Inercijski referentni sustavi." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav