Granica zapaljivosti je područje koncentracija kod kojeg se smjesa zraka i zapaljivog materijala može nekim izvorom paljenja (iskrenjem, električnim lukom ili zagrijavanjem) zapaliti ili eksplodirati. Ovo područje zapaljivosti se često naziva i područje eksplozivnosti i ograničeno je donjom i gornjom granicom zapaljivosti.
Donja granica zapaljivosti je najniža koncentracija zapaljivih plinova ili para koja u smjesi sa zrakom može dovesti do izgaranja i eksplozije. Gornja granica zapaljivosti je najviša koncentracija zapaljivih plinova ili para koja u smjesi sa zrakom može dovesti do izgaranja i eksplozije.
Najšire područje zapaljivosti imaju acetilen (od 2.8 % do 93 %) i vodik (od 4.6 % do 95 %). U području koncentracije između graničnih vrijednosti doći će do sagorijevanja ili do pojave eksplozije, koja je to slabija što su koncentracije plina bliže donjoj ili gornjoj granici eksplozivnosti.
Gorivi članci su naprave koje pretvaraju kemijsku u električnu energiju. Razlikuju se od baterija po tome što se proces pretvorbe odvija sve dotle dok se u članak dovode gorivo i oksidirajuće sredstvo, dok je baterija napravljena s ograničenom količinom kemikalija, te je ispražnjena kada sve kemikalije izreagiraju. Gorivi članak je galvanski članak u kojem se na elektrodama odvijaju spontane reakcije. Gorivo (uglavnom vodik) oksidira se na anodi, a oksidans (gotovo uvijek kisik ili zrak) reducira se na katodi.
Neki gorivi članci koriste kao elektrolit vodene otopine, on može biti kiseli ili alkalni, a može biti i ionski vodljiva membrana namočena vodenom otopinom. Ovakvi gorivi članci rade na relativno niskim temperaturama, od sobne temperature do temperature vrenja vode. Neki gorivi članci kao elektrolit koriste taline soli (posebno karbonata) i rade na temperaturi od nekoliko stotina Celzijevih stupnjeva. Drugi koriste ionski vodljive čvrste tvari a rade na temperaturama blizu 1 000 °C.
Slabi elektroliti su oni elektroliti koji u vodenim otopinama samo djelomično disociraju na ione i koji su u ravnoteži s nedisociranim molekulama. Njihove vodene otopine slabo provode električnu struju. Npr. acetatna kiselina samo djelomično disocira pa otopina acetatne kiseline sadrži molekule acetatne kiseline, vodikove ione i acetatne ione.
Galvanski članak (naponski članak, Voltin članak) jest elektrokemijski članak u kojem se kemijska energija spontano pretvara u električnu. Galvanski članak sastoji se od dva polučlanka, a svaki polučlanak od elektrode uronjene u elektrolit. Elektrolit može biti zajednički za obje elektrode ili različit za svaku elektrodu. Dva elektrolita odvajamo polupropusnom membranom ili ih spajamo elektrolitskim mostom. Ako se elektrode povežu nekim vodičem, elektroni putuju kroz vodič od negativnog pola prema pozitivnom polu.
Danielov članak je primjer galvanskog članka. Sastoji se od bakrene i cinkove elektrode, a kao elektrolit služe otopine bakrova(II) sulfata i cinkova sulfata odijeljene polupropusnom membranom. Kada se elektrode spoje električnim vodičem kroz strujni krug će proteći električna struja. Na negativnom polu (cinkovoj elektrodi) zbiva se proces oksidacije A na pozitivnom polu (bakrenoj elektrodi) zbiva se proces redukcije.
Elektromotornu silu galvanskog članka možemo izračunati iz razlike redoks potencijala tvari koja se reducirala (bakra) i tvari koja se oksidirala (cinka).
Galvanski članak može se shematski prikazati upotrebom okomite crte. Uobičajeno je da se oksidirana vrsta piše s lijeve strane.
Ime je dobila u čast talijanskog znanstvenika i liječnika Luigia Galvania (1737.-1798.).
Gaussov zakon opisuje vezu između mirnog naboja i električnog polja pa je, zapravo, ekvivalentan Coulombovom zakonu, koji se može izvesti iz Gaussova. Gaussov zakon kaže da je tok električnog polja, Φ, kroz neku zamišljenu zatvorenu plohu površine S - Gaussovu plohu - jednak ukupnom naboju q, koji je unutar te zatvorene plohe:
Pritom je tok Φ kroz Gaussovu plohu površine S dan izrazom:
u kojem je ε0 permitivnost vakuuma, a dS je element površine.
Staklena elektroda je elektroda osjetljiva na vodikove ione. Sastoji se od staklene membrane, unutarnje referentne elektrode i unutarnje otopine. Može se također prirediti i staklena elektroda osjetljiva na natrijeve ione.
Staklena elektroda ima ekstremno velik električni otpor. Membrana tipične staklene elektrode (debljine od 0.03 mm do 0.1 mm) ima električni otpor od 30 MΩ do 600 MΩ). Aktivitet vodikovih iona u unutrašnjoj otopini je stalan. Površina staklene membrane mora biti hidratizirana da bi djelovala kao pH elektroda. kada se staklena membrana uroni u vodenu otopinu na njenoj površini se formira tanki gel sloj pri čemu dolazi do ionske izmjene između iona natrija u kristalnoj rešetki stakla i vodikovog iona. Ista stvar se dešava i na unutrašnjoj strani membrane.
Najjednostavnije objašnjenje rada staklene membrane je da se staklo ponaša kao slaba kiselina (staklo-H).
Aktivitet vodikovih iona u unutrašnjoj otopini je stalan. Kada se na vanjskoj strani staklene membrane promijeni koncentracija vodikovih iona staklo će se protonirati ili deprotonirati. Razlika pH otopina s unutrašnje i vanjske strane staklene membrane stvara elektromotornu silu proporcionalnu toj razlici.
Halogenirani ugljikovodici su spojevi koji sadržavaju samo ugljik, jedan ili više halogena, i ponekad vodik, primjerice ugljikov tetraklorid ili tetraklorometan (CCl4), tetrabromometan (CBr4). Niži članovi različitih homolognih nizova koriste se kao sredstva za hlađenje, sredstva za gašenje požara i kao sredstva za pjenjenje poliuretanske pjene. Polimerizacijom halogeniranih ugljikovodika nastaju plastične mase koje karakterizira visoka kemijska otpornost, visoka električna otpornost i dobra toplinska stabilnost.
Ionska jakost (μ ili I) otopine mjera je jakosti električnog polja koje daju ioni u otopini. Ionska jakost jednaka je polovini zbroja produkata koncentracije (c) i kvadrata naboja (z) svakog iona u otopini
Izoelektrična točka (pI ili IEP) je pH otopine ili disperzije pri kojem je neto naboj molekule ili koloidne čestice jednak nuli. U izoelektričnoj točki aminokiseline ne putuju prema elektrodama pod utjecajem električnog polja. Neto naboj (algebarska suma svih nabijenih skupina prisutnih u dipolarnom ionu) aminokiselina, peptida i bjelančevina ovisi o pH vrijednosti otopine. Ispod izoelektrične točke aminokiseline adiraju protone i stvaraju katione a iznad izoelektrične točke se pretvaraju u anione. Primjerice, alanin može imati naboj +1, 0 ili -1 ovisno o pH vrijednosti medija u kojem je otopljen.
Kripton su 1898. godine otkrili Sir William Ramsay i Morris W. Travers (Engleska). Ime je dobio od grčke riječi kryptos što znači skriven. To je kemijski inertan, jednoatomni nezapaljivi plin bez boje i mirisa. Ne spaja s drugim elementima izuzev s fluorom. Kripton se dobiva frakcijskom destilacijom tekućeg zraka. Upotrebljava se za punjenje električnih žarulja.
Generalić, Eni. "Električni dvosloj." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav