Henryjev zakon formulirao je 1803. engleski kemičar William Henry (1775.-1836.). Sadržaj plina otopljenog u tekućini pri određenoj temperaturi upravo je razmjeran parcijalnom tlaku tog plina iznad tekućine. Henryjev zakon vrijedi samo za slabo topljive plinove pri niskim parcijalnim tlakovima.
gdje je pi parcijalni tlak komponente i iznad otopine, xi je molarni udio u otopini a Kx je konstanta karakteristična za dani plin i otapalo.
Kohlrauchov zakon kaže da je vodljivost elektrolita pri beskonačnom razrjeđenju jednaka zbroju provodljivosti aniona i kationa. Ako se sol otopi u vodi, vodljivost otopine jednaka je zbroju provodljivosti aniona i kationa. Zakon, koji govori o neovisnoj migraciji iona, izveo je iz eksperimenta njemački kemičar Friedrich Kohlrausch (1840.-1910.).
Nernstov zakon razdjeljenja kaže da se tvar raspodjeljuje između dva otapala tako da je omjer koncentracija te tvari pri nekoj temperaturi stalan, uz uvjet da se u oba otapala tvar nalazi u istom molekularnom obliku. Koeficijent razdjeljenja odnos je koncentracija tvari u otapalima A i B na određenoj temperaturi.
Pojava razdjeljenja iskorištava se za ekstrakciju tvari.
Svaki objekt u svemiru privlači svaki drugi objekt silom (gravitacijska sila, FG) koja djeluje duž pravca kroz središta objekata, a proporcionalna je umnošku masa objekata i obrnuto proporcionalna kvadratu udaljenosti između njih.
m1 i m2 su mase objekata a r je udaljenost između njih. G je univerzalna gravitacijska konstanta a iznosi 6.67•10-26 N m2 kg-2. Strogo govoreći ovaj zakon vrijedi samo za objekte koje možemo smatrati materijalnim točkama. Inače, gravitacijsku silu treba računati integriranjem sila između različitih elemenata mase. Newtonov zakon gravitacije izveden je iz Keplerovih zakona, koji opisuju gibanje planeta, te uz fizikalnu pretpostavku da je Sunce središte i izvor gravitacijske sile.
Ispravnije je Newtonov zakon gravitacije napisati uz pomoć vektorske jednadžbe:
u kojoj su r1 i r2 položajni vektori masa m1 i m2.
Gravitacijske sile djeluju na daljinu, što znači da djeluju kroz prostor bez materijalnog dodira među objektima. Newtonov zakon gravitacije izveden je iz Keplerovih zakona za planetarna gibanja, uz fizikalnu pretpostavku da je sunce središte i izvor gravitacijske sile.
Također, svaki se objekt giba u smjeru djelovanja sile koja na njega djeluje, akceleracijom koja je obrnuto proporcionalna masi objekta. Za tijela na površini Zemlje, udaljenost r u izrazu za gravitacijsku silu praktički je jednaka polumjeru Zemlje, RE. Ako masu tog tijela označimo sa m a masu Zemlje sa RE, izraz za gravitacijsku silu kojom Zemlja djeluje na tijela na svojoj površini može se ovako napisati
pri čemu je g gravitacijska akceleracija, koja se iako ovisi o geografskoj širini, obično smatra konstantom približne vrijednosti 9.81 m s-2.
Kad zraka svjetlosti pada na granicu između dva prozirna sredstva, dijelom se odbija a dijelom se lomi. Obje zrake, odbijena i lomljena, leže u istoj ravnini kao i upadna zraka.
Kut odbijanja jednak je kutu upada. Kut loma (Θ2) povezan je s kutom upada (Θ1) Snellovim zakonom:
n1 i n2 su bezdimenzijske konstante - indeksi loma dvaju sredstava.
Na tijelo u fluidu (plinu ili tekućini) djeluje sila (uzgon), koja je po iznosu jednaka težini istisnute tekućine, a ima smjer suprotan sili težine tijela.
Privlačna sila između dva suprotna električna naboja upravo je razmjerna količini elektrike pozitivnog naboja q1 i negativnog naboja q2, a obrnuto razmjerna kvadratu udaljenosti naboja r
gdje je εo permitivnost vakuuma (dielektrična konstanta vakuuma) i jednaka je
Parcijalni tlak jedne komponente u smjesi jednak je produktu tlaka zasićene pare čiste komponente pri određenoj temperaturi i njezinog množinskog udjela u smjesi.
Konstanta ravnoteže (K) prvi put se pojavljuje u zakonu o djelovanju masa koji su 1863. formulirali norveški kemičari C.M. Guldberg i P. Waage. Reverzibilna kemijska reakcija prikazana jednadžbom
u ravnoteži je onda kada je brzina napredne reakcije jednaka brzini povratne reakcije.
Konstanta ravnoteže definirana je odnosom ravnotežnih aktiviteta produkata i reaktanata
Kod praktičnih mjerenja često se aktiviteti zamjenjuju koncentracijama
Za reakcije u plinskoj fazi umjesto koncetracija upotrebljavaju se parcijalni tlakovi
Termodinamička konstanta K nema jedinicu, dok jedinica za Kp i Kc ovisi o broju molekula koje se pojavljuju u stehiometrijskoj jednadžbi (a, b, c i d).
Veličina konstante ravnoteže ovisi o temperaturi. Ako je napredna reakcija egzotermna, konstanta ravnoteže smanjuje se povećanjem temperature. Što je veća konstanta ravnoteže neke kemijske reakcije, to je ravnoteža više pomaknuta na stranu stvaranja produkata reakcije. Položaj uspostavljene ravnoteže može se mijenjati, ali ne i konstanta. Sustav u ravnoteži brani se od promjene tako da nastoji poništiti vanjski utjecaj (Le Chatelierov princip).
Konstanta ravnoteže kemijske reakcije izravno je proporcionalna promjeni standardne Gibbsove slobodne energije
Ravnoteža koja se uspostavlja kod reakcije ugljikova(IV) oksida s ugljikom naziva se Boudouardova ravnoteža. Zbog endotermnosti reakcije povećanje temperature pomiče reakciju udesno a sniženje temperature ulijevo.
Generalić, Eni. "Zakon o kemijskoj ravnoteži." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav