Temperatura zapaljenja najniža je temperatura na kojoj para tekućine ili hlapljive čvrste tvari stvara zapaljivu smjesu sa zrakom. Pri temperaturi zapaljenja pare blizu površine tekućine zapale se kada se izlože plamenu.
Mehanika fluida bavi se proučavanjem različitih svojstava fluida (tekućina i plinova): brzine, tlaka, gustoće i temperature kao funkcije prostora i vremena.
Kromatografija je metoda odvajanja koja se zasniva na različitoj raspodjeli komponenti uzorka između dvije faze od kojih je jedna nepokretna (stacionarna) a druga pokretna (mobilna). Stacionarna faza može biti čvrsta ili tekuća, a mobilna tekuća (tekućinska kromatografija) ili plinovita (plinska kromatografija). Komponente se pod utjecajem mobilne faze kreću kroz stacionarnu fazu različitom brzinom i tako se razdvajaju.
Kobalt je 1735. godine otkrio Georg Brand (Njemačka). Ime je dobio po njemačkom duhu koji čuva metale u zemlji - kobold ili od grčke riječi cobalos što znači rudnik. To je srebrno-plavi, sjajni, tvrdi metal koji zajedno sa željezom i niklom čini trijadu željeza. Površina mu je stabilna na zraku sve do 300 °C. Otapa se u kiselinama dok s lužinama praktički ne reagira. S koncentriranom nitratnom kiselinom kobalt prelazi u pasivno stanje. Feromagnetičan je sve do 1150 °C. Kobaltove para ili prašina i njegovi spojevi su toksični. U Zemljinoj kori javlja se u obliku arsenida i sulfida kao kobaltit (CoAs2·CoS2) i smaltit (CoS2). Kobalt se obično dobiva kao nusproizvod pri preradi ruda bakra i nikla. Uglavnom se upotrebljava u metalurgiji za izradu legura otpornih na koroziju i legura za permanentne magnete. Kobalt-60 je umjetni izotop koji se koristi u medicini kao izvor gama zračenja.
Koloidi su sustavi dvije ili više faza u kojima najmanje jedna faza ima čestice dimenzija između 1 nm i 1 μm (10-9 m – 10-6 m). Dimenzije čestica, više od prirode čestica, karakteriziraju koloide. Koloidne čestice se ne mogu odijeliti filtriranjem jer su premalene i prolaze kroz pore filtar papira. Zbog malih dimenzija i male mase koloidne čestice se ne talože, već lebde u otopini, praveći koloidnu otopinu. Takva je otopina naizgled bistra, ali za razliku od prave otopine pokazuje Tyndallov efekt. Koloidne čestice mogu adsorbirat ione iz otopine čime nastaju koloidni ioni. Makromolekule (npr. bjelančevine) donja su granica veličine koloidnih čestica a čestice koje se još ne mogu vidjeti optičkim mikroskopom gornja su granica.
Koloidne čestice mogu biti plinovite, tekuće ili čvrste. Dijelimo ih na:
sole - disperzije čvrstih čestica u tekućini
emulzije - disperzije tekućine u tekućini
gelove - koagulirani oblik koloidnih sustava
aerosole - disperzije čvrstih ili tekućih čestice u plinu
pjene - disperzije plinova u tekućinama ili čvrstim tvarima
U prirodi ima veoma mnogo koloida, a mnoge tvari već po veličini svojih molekula pripadaju koloidima kao što su škrob ili bjelančevine.
Koloidi se mogu pripremiti disperzijom većih čestica ili kondenzacijom molekulskih otopina.
Fluorescencije je vrsta luminiscencije u kojoj se elektron vraća u svoje osnovno stanje gotovo trenutno (za manje od 10-8 sekunda), i u kojoj emisija svjetla prestaje kada se ukloni izvor pobude. Fluorescenciju karakterizira emisija zračenja u svim smjerovima.
Koloidni mlinovi su naprave za pripremanje disperzija veoma sitnih (dimenzija manjih od jednog mikrometra) čvrstih ili tekućih tvari u tekućinama. Najčešći su tip koloidnih mlinova disk-mlinovi. Smjesa čvrste tvari i tekućine (ili dviju tekućina) prolazi kroz mali razmak između dva diska koji veoma brzo rotiraju. Koloidni se mlinovi upotrebljavaju u prehrambenoj i farmaceutskoj industriji kao i u proizvodnji boja.
Termin zapaljiv često se upotrebljava kad se opisuje materijal koji gori. Ipak se uvjeti pri kojem dolazi do zapaljenja nastoje točnije definirati, npr. zapaljiva je tekućina ona koja se može zapaliti iznad 37.8 °C ali ispod 93.3 °C. Ovo omogućava razliku između materijala koje je prilično teško zapaliti i onih koje je jako lako zapaliti.
Kritična točka je točka na faznom dijagramu dvofaznog sustava u kojoj dvije faze imaju jednaka svojstva i zbog toga čine jednu fazu. U kritičnoj točki za tekuću i plinovitu fazu čiste tvari nestaje razlika između tekućine i plina i u njoj završava krivulja napona pare. Koordinate ove točke jesu kritična temperatura i kritični tlak. Iznad kritične temperature fluid se ne može ukapljiti.
Generalić, Eni. "Tekuće agregatno stanje." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav