Sunčeva ili fotonaponska ćelija jest naprava koja sunčevu svjetlost pretvara u elektricitet. Sve sunčeve ćelije koriste se fotonaponskom pojavom, pa se često zovu fotonaponskim napravama. U većini ovih ćelija osnovni materijal čine poluvodiči, a najčešći je silicij.
Fotonaponska pojava zasniva se na stvaranju pokretnih nositelja naboja - elektrona i šupljina - uslijed apsorpcije fotona svjetlosti. Ovaj par naboja stvara se kad elektron u najvišoj popunjenoj elektronskoj vrpci poluvodiča (valentnoj vrpci) apsorbira foton dostatne energije i prijeđe u praznu elektronsku vrpcu (vodljivu vrpcu). Ovo pobuđenje može se inducirati samo fotonom čija energija odgovara širini energijskog procjepa koji razdvaja valentnu i vodljivu vrpcu. Stvaranje para naboja elektron-šupljina može se pretvoriti u električnu struju u poluvodičkoj napravi, u kojoj je sloj jednog poluvodiča spojen sa slojem drugačijeg poluvodiča ili pak metala. U većini poluvodičkih ćelija ovaj je spoj takozvani p-n spoj, tj. sučeljavaju se p-dopirani i n-dopirani poluvodič. Na sučelju višak pozitivnog naboja (šupljina) u p-dopiranom poluvodičkom sloju i višak negativnog naboja (elektrona) u n-dopiranom poluvodičkom sloju stvara električno polje, koje se prostire s obje strane sučelja. Kad se apsorpcijom fotona u ovom području stvori par elektron-šupljina, ovi naboji se, zbog djelovanja polja, udaljuju od sučelja krećući se u suprotnim smjerovima prema vrhu i dnu ćelije, gdje se nalaze metalne elektrode za skupljanje struje. Elektroda na vrhu (kroz koju se apsorbira svjetlost ) podijeljena je na trake tako da ne zaklanja poluvodički sloj. U većini komercijalnih ćelija p-n spoj se formira unutar monolitnog komada kristalnog silicija. Silicij apsorbira sunčevu svjetlost onih valnih duljina pri kojima je najintenzivnija, od bliskog infracrvenog područja (valnih duljina oko 1200 nm) do ljubičastog (valnih duljina oko 350 nm).
Polarizirirana elektroda često daje odnos struje i potencijala po površini i može se aproksimirati sljedećim izrazom:
gdje je η promjena potencijala u strujnom krugu; i gustoća struje; B i i0 su konstante. B je konstanta poznata kao Tafelov nagib. Ako se ponašanje tog strujnog kruga promatra preko grafa, onda se graf ovih polulogaritamskih vrijednosti zove Tafelova linija, a dijagram se onda zove Tafelov dijagram.
Toplina uvijek prelazi s tijela više na tijelo niže temperature. Brzina toka topline, H = dQ/dt, proporcionalna je temperaturnoj razlici, ΔT, pa analogno Ohmovom zakonu, možemo pisati:
Pri čemu se H mjeri u vatima a Rt je toplinski otpor, mjeren u K/W. Pretpostavimo, na primjer, da su u dvije kuće zidovi jednake debljine, ali su u jednoj od stakla a u drugoj od azbesta. Za hladna vremena, toplina će brže otjecati kroz staklenu kuću. Dakle, toplinski otpor azbesta veći je nego toplinski otpor stakla. Ako se lijeva i desna strana jednadžbe, koja predstavlja toplinski Ohmov zakon, podijeli s toplinskim kapacitetom C, dobije se Newtonov zakon hlađenja:
gdje je dT/dt brzina hlađenja ili grijanja, mjerena u K s-1, a C, toplinski kapacitet, mjeri se u J K-1.
Termometri su sprave za mjerenje temperature. Linearno i volumensko toplinsko rastezanje makroskopska su svojstva tvari i lakše su mjerljiva od mikroskopskih svojstava, kojima se definira temperatura. Stoga se mjerenjem tih svojstava može odrediti temperatura. Termometri koji se zasnivaju na toplinskom rastezanju tvari su sekundarni instrumenti: moraju se baždariti, tako da se usporede s nekim standardnim termometrom. U termometru s tekućinom, živa ili alkohol se nalaze u staklenoj posudici. Povećanjem temperature povećava se volumen tekućine, što uzrokuje podizanje tekućine uskom kapilarnom cjevčicom. Visina razine tekućine u cjevčici je mjera temperature. Živinim termometrom mjere se temperature između -39 °C i 300 °C. Niže temperature mjere se alkoholnim termometrom. Bimetalni termometri imaju spiralnu oprugu sastavljenu od dva metala, različitih koeficijenata linearnog rastezanja. Promjenom temperature metali se različito produžuju pa se savijanje spirale prenosi na kazaljku, čiji otklon je mjera temperature.
Evangelista Torricelli (1852.-1908.) je talijanski fizičar i matematičar. On je prvi uspio stvoriti stalni vakuum i izumio je barometar (1643.). Staklenu cijev, zatvorenu na jednom kraju, napunio je živom i pažljivo uronio otvorenim krajem u posudu sa živom. Živa u cijevi se spustila ostavljajući vakuum u cijevi iznad nje. Otkrio je da visina stupca žive varira ovisno o atmosferskom tlaku. Također je konstruirao brojne i kvalitetne leće.
U-manometar je staklena u cijev napunjena vodom ili živom i koristi se za mjerenje tlaka. Tlak se mjeri tako da se jedan njen kraj priključi na prostor u kojemu treba izmjeriti tlak (P), a na drugom je kraju poznati tlak (Pref), obično atmosferski tlak (cijev je otvorena prema okolišu). Ako je tlak u promatranom prostoru veći od okolišnoga tlaka, u tom se dijelu U-cijevi stupac kapljevine spusti, a u suprotnom podigne.
Ako je fluid C atmosferski zrak, fluid B tekućina u cijevi (npr. voda ili živa) a fluid A plin koji ispitujemo tada je ρB >> ρA, ρC. Tlak uzrokovan masom plina u cijevi može se zanemariti pa se nepoznati tlak plina može izračunati pomoću jednadžbe:
Ljudsko oko zapaža samo elektromagnetsko zračenje u području valnih duljina od 400 nm do 760 nm. Taj uski dio elektromagnetskog spektra naziva se vidljivo zračenje. Vidljiva (bijela) svjetlost smjesa je svjetlosti svih boja koja se, pomoću staklene prizme, može rastaviti na sastavne boje - spektar vidljive svjetlosti, a svaka boja odgovara određenom području valnih duljina:
boja | valna duljina / nm |
---|---|
ljubičasta | 400 - 450 |
plava | 450 - 500 |
zelena | 500 - 570 |
žuta | 570 - 590 |
narančasta | 590 - 620 |
crvena | 620 - 760 |
Odmjerne tikvice su staklene boce, kruškastog oblika s dugim uskim vratom i ravnim dnom. U većini slučajeva odmjerne tikvice imaju brušeni stakleni čep. Oznaka volumena je fluoridnom kiselinom urezana uokrug vrata da se izbjegne paralaksa (tikvica se namjesti tako ispred očiju da se vidi samo ravna crta). Tikvica je ispravno napunjena kad se donji rub meniskusa podudara s crtom na vratu tikvice. Služe za pripravu točno poznatog volumena otopine uzorka i standardnih otopina reagensa. Na svakoj je tikvici, uz volumen, označena i temperatura na kojoj je tikvica baždarena. Oznaka temperature ima prefiks TC (to contain) ili In (lat. u) što znači da je tikvica baždarena ulijevanjem.
Plastična boca štrcaljka jest boca načinjena od polietilena niske gustoće (LDPE). Stiskanjem boce njen sadržaj snažnim mlazom izlazi kroz usku cjevčicu na vrhu boce.
Staklena boca štrcaljka jest boca opremljena s dvije staklene cijevi koje prolaze kroz čep. Duža od njih ide do dna boce a druga završava neposredno ispod čepa. Puhanjem u kraću cijevi može se mlazom vode koji izlazi iz druge cijevi nešto oprati ili isprati, primjerice talog na filtar papiru.
Wilsonova komora služi za otkrivanje radioaktivnog zračenja. Wilsonova komora ima stakleni cilindar napunjen zrakom zasićenim vodenom parom. Radioaktivno zračenje na svom putu ionizira molekule plina koje onda služe kao središta kondenzacije vodene pare u vrlo sitne kapljice koje pokazuju Tyndallov efekt, tj. vide se kao svijetli trag.
Generalić, Eni. "Staklena elektroda." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav