Elektronska konfiguracija nam kaže broj elektrona u atomu ili ionu i njihov razmještaj po orbitalama (Vidi Tablica elektronskih konfiguracija elemenata). Struktura i sve zakonitosti u periodnom sustavu ovise o elektronskoj konfiguraciji atoma elemenata. Svojstva elementa uglavnom ovise o elektronskoj konfiguraciji vanjske ljuske. Popunjavanjem nove elektronske ljuske nastaju atomi elemenata slične elektronske konfiguracije kao i u prethodnoj ljuski, što dovodi do periodičnosti svojstava elemenata.
Vaga s jednakim krakovima najjednostavniji je tip vage koji se temelji na principu poluge. Uporište (oslonac) oko koje se okreće poluga vage oštri je brid trostrane ahatne prizme koji se oslanja na ravnu pločicu od istog materijala. Na krajevima poluge, jednako udaljene od uporišta, na prizme noževe obješene su zdjelice. Točnost ove podjele, međusobni položaj prizmi i preciznost njihove obrade određuju kvalitetu vage. Na polugu vage, pod pravim kutom, učvršćena je kazaljka koja pokazuje je li vaga u ravnoteži.
Svaka vaga ima uređaj za kočenje/oslobađanje koji štiti osjetljive bridove prizmi od oštećenje, pogotovo u trenutku stavljanja i skidanja predmeta i utega s vage. Predmet koji se važe stavlja s na zdjelicu obješenu o jedan krak vage (obično lijevu) a odgovarajuća masa utega na zdjelicu obješenu o drugi krak vage. Vaga obavezno mora biti zakočena kada se predmeti ili utezi stavljaju na zdjelice.
Elektroni su elementarne čestice s negativnim električnim nabojem od (1.602 189 2±0.000 004 6)×10-19 C i 1/1837 mase protona, odnosno (9.109 534±0.000 047)×10-31 kg.
Elektron je 1897. otkrio engleski fizičar J.J. Thompson (1856.-1940.). On je ustanovio da prilikom provođenja elektrike kroz veoma razrijeđene plinove u Crookesovoj cijevi nastaju nevidljive zrake koje se od katode šire u pravcu i pod čijim utjecajem mnoge tvari fluoresciraju. Te zrake, katodne zrake, sastoje se od negativno nabijenih čestica koje se mogu skrenuti djelovanjem električnog i magnetskog polja.
Elektroni u atomu smješteni su u sedam ljuski oko jezgre, a maksimalni broj elektrona u svakoj ljusci ograničen je fizikalnim zakonima (2n2). Vanjska ljuska nije uvijek popunjena: natrij ima dva elektrona u prvoj ljusci (2×12 = 2), osam u drugoj (2×22 = 8) i samo jedan u trećoj ljusci (2×32 = 18). Elektron iz vanjske ljuske može prijeći u nepopunjenu ljusku drugog elementa ostavljajući atom pozitivno nabijenim. Valentni elektroni su oni elektroni koji mogu biti zarobljeni od drugog atoma ili dijeljeni s drugim atomom.
Elektroni mogu biti izbačeni iz atoma toplinom, svjetlošću, električnom energijom ili bombardiranjem visokoenergetskim česticama. Slobodni elektroni koji se spontano emitiraju raspadom radioaktivnih jezgri nazivaju se β-česticama.
Konstanta ravnoteže (K) prvi put se pojavljuje u zakonu o djelovanju masa koji su 1863. formulirali norveški kemičari C.M. Guldberg i P. Waage. Reverzibilna kemijska reakcija prikazana jednadžbom
u ravnoteži je onda kada je brzina napredne reakcije jednaka brzini povratne reakcije.
Konstanta ravnoteže definirana je odnosom ravnotežnih aktiviteta produkata i reaktanata
Kod praktičnih mjerenja često se aktiviteti zamjenjuju koncentracijama
Za reakcije u plinskoj fazi umjesto koncetracija upotrebljavaju se parcijalni tlakovi
Termodinamička konstanta K nema jedinicu, dok jedinica za Kp i Kc ovisi o broju molekula koje se pojavljuju u stehiometrijskoj jednadžbi (a, b, c i d).
Veličina konstante ravnoteže ovisi o temperaturi. Ako je napredna reakcija egzotermna, konstanta ravnoteže smanjuje se povećanjem temperature. Što je veća konstanta ravnoteže neke kemijske reakcije, to je ravnoteža više pomaknuta na stranu stvaranja produkata reakcije. Položaj uspostavljene ravnoteže može se mijenjati, ali ne i konstanta. Sustav u ravnoteži brani se od promjene tako da nastoji poništiti vanjski utjecaj (Le Chatelierov princip).
Konstanta ravnoteže kemijske reakcije izravno je proporcionalna promjeni standardne Gibbsove slobodne energije
Idealna otopina je otopina kod koje su interakcije između molekula otopljene tvari i između otopljene tvari i otapala jednake. Idealne otopine ponašaju se u skladu s Raoultovim zakonom pri svim temperaturama i koncentracijama, a realne otopine tek pri jako velikim razrjeđenjima.
Ilkovičeva jednadžba je relacija koja se koristi u polarografiji a daje odnos između difuzijske struje (id) i koncentracije (c) depolarizatora, tj difundirajuće elektroaktivne vrste koja se reducira ili oksidira na kapajućoj živinoj elektrodi. Jednadžbu je 1934. izveo slovački fizičar Dionýz Ilkovič (1907.-1980.) primjenom Fickovih zakona difuzije.
gdje je k konstanta Ilkovičeve jednadžbe koja uključuje Faradayevu konstantu, π i gustoću žive i iznosi 708 za maksimalnu a 607 za prosječnu graničnu struju, D je koeficijent difuzije depolarizatora u danom mediju (cm2/s), n je broj elektrona izmijenjenih na elektrodi, m je brzina istjecanja žive kroz kapilaru (mg/sec), t je vrijeme kapanja a c je koncentracija depolarizatora (mol/cm3).
Kad se dva referentna sustava gibaju jedan u odnosu na drugi konstantnom brzinom zovemo ih inercijskim referentnim sustavima. Promatrači iz dva inercijska referentna sustava načelno mjere različite brzine nekog objekta koji se giba. Međutim, mjere istu akceleraciju tog objekta. Zakoni fizike moraju biti istog oblika u svim inercijskim sustavima (načelo invarijantnosti).
Mol (mol) je osnovna SI jedinica za količinu (množinu) tvari.
Mol je količina tvari onog sustava koji sadrži toliko elementarnih jedinki tvari koliko ima atoma u 0.012 kg izotopa ugljika 12 (12C).
Elementarne jedinke uvijek moraju biti specificirane i mogu biti atomi, molekule, ioni, elektroni, neke druge čestice ili određene grupe čestica. U jednom molu (0.012 kg) izotopa ugljika 12 ima 6.022 045×1023 atoma (Avogadrov broj).
Spektrofotometar je instrument koji služi za mjerenje količine svjetla koju apsorbira uzorak.
Apsorpcija svjetlosti kroz otopine može se matematički opisati Beer-Lambertovim zakonom
gdje je A apsorbancija na danoj valnoj duljini svjetlosti, ε je molarni apsorpcijski (ekstinkcijski) koeficijent (L mol-1 cm-1), svojstven svakoj molekulskoj vrsti i ovisan o valnoj duljini svjetlosti, b je duljina puta svjetlosti kroz uzorak (cm) a c je koncentracija tvari u otopini (mol L-1).
Odnosi množina između reaktanata i produkata u kemijskoj reakciji predstavljaju stehiometriju kemijske reakcije, a temelji se na zakonu o održanju mase. Svaka kemijska reakcija ima svoje karakteristične odnose.
Primjerice, pri potpunom izgaranju metana
vidimo da jedan mol metana reagira s dva mola kisika dajući jedan mol ugljikova dioksida i dva mola vode.
Isto tako možemo napisati da 16 g metana reagira s 64 g kisika dajući 44 g ugljikova dioksida i 36 g vode.
Kemijska jednadžba nam simbolički prikazuje kvantitativan odnos između reaktanata i produkata. Svaka kemijska jednadžba mora biti uravnotežena. Poznavanje jednadžbe kemijske reakcije omogućuje nam da odredimo količine međusobno ekvivalentnih tvari.
Generalić, Eni. "Avogadrov zakon." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav