Prenapon (η) je razlika između teorijskog potencijala članka i njegova stvarnog potencijala koji je potreban da bi se dana tvar izlučila na elektrodi pri određenoj struji. Vrijednost ovisi o elektrodnom materijalu i o gustoći struje.
Pozitivni pol je onaj polučlanak u elektrokemijskom članku koja ima pozitivniji elektrodni potencijal.
Ciklička voltametrija je elektrokemijski postupak koji se koristi pri proučavanju kinetike i mehanizama elektrodnih reakcija. Potencijal radne elektrode kontrolira se i linearno mijenja u naprednom i povratnom smjeru, a pritom se mjeri struja koja protječe kroz ćeliju.
Električni dvosloj predstavlja strukturu naboja koji se akumulira uz elektrodnu površinu kada se elektroda uroni u elektrolitnu otopinu. Višak naboja na elektrodnoj površini kompenzira se viškom iona suprotnog naboja na strani otopine. Količina naboja funkcija je elektrodnog potencijala. Ovakva struktura predstavlja u biti kondenzator. Postoji nekoliko teorijskih modela koji opisuju strukturu dvosloja. Tri najčešća jesu Helmholtzov, Gouy-Chapmanov i Gouy-Chapman-Sternov model.
Elektrode prvog reda jesu metalne elektrode uronjene u otopinu vlastitih iona (npr. srebro uronjeno u otopinu srebrova nitrata). Ravnotežni potencijal je funkcija koncentracije (točnije aktiviteta) metalnih kationa u otopini (vidi Nernstova jednadžba za elektrodni potencijal).
Elektrode drugog reda jesu metalne elektrode kojima je ravnotežni potencijal funkcija koncentracije aniona u otopini. Primjer su srebro/srebrov klorid i kalomelova elektroda. U obiju je elektroda metal prekriven svojom teško topljivom soli i uronjen u otopinu koja sadrži isti anion kao i teško topljiva sol. Na taj način je koncentracija kationa metala, odnosno elektrodni potencijal, određena koncentracijom aniona preko produkta topljivosti teško topljive soli.
Elektrode trećeg reda jesu metalne elektrode kojima je elektrodni potencijal funkcija koncentracije nekog drugog kationa, ali ne kationa metala od kojeg je elektroda. U ovom slučaju metal je u kontaktu s dvije teško topljive soli (jedna ima kation metala elektrode, a druga ima kation kojemu trebamo odrediti koncentraciju, a obje soli imaju isti anion) uronjene u otopinu soli drugog metala (npr. cink--cinkov oksalat--kalcijev oksalat-- otopina kalcijeve soli). Potencijal ove elektrode ovisi o koncentraciji njenog kationa u otopini, ali njegova je koncentracija kontrolirana koncentracijom aniona preko produkta topljivosti. Koncentracija zajedničkog aniona opet je u ovisnosti o koncentraciji kationa druge teško topljive soli. Ove su elektrode vrlo trome i nestabilne što je posljedica serije ravnoteža koje se moraju uspostavit prije nego što se dobije stabilni potencijal.
Fugacitet (f) je termodinamička funkcija koja se koristi umjesto parcijalnih tlakova kod reakcija u kojima sudjeluju realni plinovi. Za neku komponentu smjese definiran je kao
gdje je μ kemijski potencijal.
Fugacitet plinova jednak je tlaku koji bi plin imao da je idealan. Fugacitet tekućina i čvrstih tvari jednak je fugacitetu para s kojima su u ravnoteži. Aktivitet je odnos fugaciteta i fugaciteta standardnog stanja.
Potenciometrijska titracija je volumetrijska metoda kojom se mjeri potencijal između dvije elektrode (referentne i indikatorske elektrode) kao funkcija dodanog volumena reagensa. Temeljni princip potenciometrijske titracije je određivanje nepoznate koncentracije ispitivane otopine titracijom s nekom standardnom otopinom pri čemu skokovita (nagla) promjena potencijala indikatorske elektrode ukazuje i određuje završnu točku titracije.
Instrumentalno određivanje završne točke ima niz prednosti u odnosu na korištenje indikatora. Vizualno određivanje završne točke opterećeno je subjektivnim faktorima, a ne može se koristiti u mutnim i obojenim otopinama. Potenciometrijske metode određivanja završne točke mogu se primijeniti, ne samo za kiselo-bazne titracije već i kod taložnih, redoks i drugih titracija.
Titracijska krivulja ima karakterističan sigmoidalni oblik. Dio krivulje s maksimalnom promjenom potencijala je ekvivalentna točka titracije. Točku ekvivalencije možemo točnije odrediti iz diferencijalne krivulje ΔE/ΔV gdje maksimum krivulje određuje točku ekvivalencije.
Srebro/srebrov klorid elektroda je najčešće korištena referentna elektroda zbog svoje jednostavnosti, neotrovnosti, niske cijene i stabilnosti. Najčešći se puni zasićenim kalijevim kloridom ali može biti punjena i kalijevim kloridom nižih koncentracija, npr. 3.5 mol dm-3 ili 1 mol dm-3. Rad srebro/srebrov klorid elektrode temelji se na polureakciji
Tablica: Ovisnost potencijala srebro/srebrov klorid elektrode o temperaturi i koncentraciji KCl prema standardnoj vodikovoj elektrodi
potencijal prema SHE / V | ||
---|---|---|
t / °C | 3.5 mol dm-3 | zasić. otop. |
15 | 0.212 | 0.209 |
20 | 0.208 | 0.204 |
25 | 0.205 | 0.199 |
30 | 0.201 | 0.194 |
35 | 0.197 | 0.189 |
Generalić, Eni. "Standardni elektrodni potencijal." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav