Praktični salinitet (praktična slanost), označen kao SP, definirao je JPOTS 1978. Skala praktičnog saliniteta (Practical Salinity Scale 1978, PSS-78) definirana je preko K15, odnosno odnosa električne vodljivosti uzorka mora pri t68 = 15 °C i tlaku od jedne standardne atmosfere i otopine kalijevog klorida (KCl) u kojoj je maseni udio KCl točno 0.0324356 (32.4356 g KCl otopljeno je u 1 kg otopine) pri istom tlaku i temperaturi. Praktični salinitet je bezdimenzijska veličina iako mu ponekad (pogrešno) pripisuju jedinicu "psu". Po definiciji, K15 iznosi točno 1 kada je praktični salinitet jednak 35 (pri gornjim uvjetima vodljivost obje otopine je C(35,1568,0) = 42.914 mS/cm = 4.2914 S/m). Praktični salinitet definiran je slijedećom jednadžbom koja vrijedi za slanosti od 2 do 42:
Kod mjerenja pri temperaturama i tlakovima (dubinama) različitim od standardnih računa se odnos vodljivosti R koji se može prikazati kao produkt tri faktora označena s Rp, Rt i rt:
Za svaku temperaturu različitu od t68 = 15 °C Praktični salinitet dan je kao funkcija od Rt (pri čemu je k = 0.0162). Pri temperaturi t68 = 15 °C Rt postaje K15.
Zaštita žrtvovanom elektrodom zaštita je željeza ili čelika protiv korozije koristeći reaktivniji metal. Komadići cinkove ili magnezijeve slitine pričvrste se za tijela pumpi ili cijevi. Zaštićeni metal je katoda i ne korodira dok anoda korodira. Ovakvi se predmeti zovu žrtvovane anode. Žrtvovane elektrode moraju se periodično zamjenjivati ovisno o brzini trošenja.
Željezna cijev spojena je s reaktivnijim metalom, kao što je magnezij, koji će donirati svoje elektrone i sprječiti hrđanje željeza. Eventualno oksidirano željezo će se reducirati nazad u elementarno stanje.
Zasićene masti u čvrstom su stanju pri sobnoj temperaturi. Zasićene masti u hranu dolaze uglavnom iz životinjskih izvora (govedina, mlijeko i mliječni proizvodi, crveno meso) ali također i iz tropskih biljnih ulja (kokosovog ili palminog ulja).
Zasićena otopina je otopina koja sadrži maksimalno moguću količinu otopljene tvari. Kada je otopina zasićena, postignuto je stanje ravnoteže jer je brzina otapajnja čvrste tvari i brzina rekristalizacije ista. Količina tvari koja se može otopiti varira s temperaturom; hladne otopine obično sadrže manje otopljene tvari nego vruće otopine. Plinovi su topljiviji u hladnim nego u vrućim tekućinama.
Koncentracija tvari u takvoj zasićenoj otopini naziva se topljivošću te tvari pri danoj temperaturi.
Sekunda (s) je SI jedinica za vrijeme.
To je trajanje 9 192 631 770 perioda zračenja koje odgovara prijelazu između dvaju hiperfinih nivoa (od F = 4, mF = 0 do F = 3, mF = 0) osnovnog stanja atoma cezija 133 (133Cs). Periodu definiramo kao vrijeme potrebno da svjetlost prevali put koji odgovara jednoj valnoj duljini.
Konstanta produkta topljivosti (Ksp ili Kpt) umnožak je ravnotežnih koncentracija (točnije aktiviteta) iona taloga podignutih na potenciju svog stehiometrijskog faktora u ravnotežnoj jednadžbi. Za bilo koji spoj opće formule AaBb
konstanta produkta topljivosti iznosi
Što je manja vrijednost konstante produkta topljivosti, to je manja topljivost tvari.
Standardni elektrodni potencijal (E°) (standardni redukcijski potencijl) definiran je mjerenjem relativnih elektrodnih potencijala uz standardne uvjete (aktivitet 1, tlak 101 325 Pa i temperatura 25 °C) prema standardnoj vodikovoj elektrodi. Po konvenciji članak se piše tako da se oksidirani oblik piše prvi. Na primjer,
Elektromotorna sila gornjeg članka je -0.76 V pa je standardni elektrodni potencijal Zn2+|Zn polućelije -0.76 V.
Kada su aktiviteti oksidiranog i reduciranog oblika jednaki 1, tada je logaritamski član u Nernstovoj jednadžbi za elektrodni potencijal jednak nuli i imamo
Stehiometrijski koeficijent (ν) jest broj koji se nalazi ispred formule svakog spoja u jednadžbi kemijske reakcije. Ako ne piše nijedan broj ispred formule, stehiometrijski koeficijent je 1. Prema konvenciji negativan je za reaktante a pozitivan za produkte.
Stehiometrijski koeficijenti opisuju stehiometriju kemijske reakcije.
U ovoj reakciji, a, b, c i d predstavljaju stehiometrijske koeficijente A, B, C i D.
Odnosi množina između reaktanata i produkata u kemijskoj reakciji predstavljaju stehiometriju kemijske reakcije, a temelji se na zakonu o održanju mase. Svaka kemijska reakcija ima svoje karakteristične odnose.
Primjerice, pri potpunom izgaranju metana
vidimo da jedan mol metana reagira s dva mola kisika dajući jedan mol ugljikova dioksida i dva mola vode.
Isto tako možemo napisati da 16 g metana reagira s 64 g kisika dajući 44 g ugljikova dioksida i 36 g vode.
Kemijska jednadžba nam simbolički prikazuje kvantitativan odnos između reaktanata i produkata. Svaka kemijska jednadžba mora biti uravnotežena. Poznavanje jednadžbe kemijske reakcije omogućuje nam da odredimo količine međusobno ekvivalentnih tvari.
Sumpor je poznat od davnih vremena. Ime mu potječe od sanskrtskog sulva-ari što znači neprijatelj bakra. To je žuti kristaličan ili amorfan prah bez okusa i mirisa koji se ne otapa u vodi ali se otapa u ugljikovom disulfidu (CS2). Sumpor na zraku gori plavičastim plamenom. Osim u elementarnom stanju sumpor se u prirodi pojavljuje u obliku sulfida i sulfata. Od sulfidnih minerali najčešći su pirit (FeS2), halkopirit (CuFeS2) i sfalerit (ZnS), a od sulfatnih gips (CaSO4·2H2O). Upotrebljava se za proizvodnju sulfatne kiseline, vulkanizaciju gume i proizvodnju baruta.
Generalić, Eni. "Jednadžba stanja." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav