Ligandi su molekule ili ioni koji se s centralnim metalnim ionom vezuju u kompleks. Ligandi mogu biti ioni ili molekule koji imaju slobodne elektronske parove. Takvi ioni jesu: fluorid (F-), klorid (Cl-), bromid (Br-), jodid (I-), sulfid (S2-), cijanid (CN-), tiocijanat (NCS-), hidroksid (OH-), peroksid (O22-), nitrozil (NO+), nitrit (NO2-), amid (NH2-), karbonat (CO32-), tiosulfat (S2O32-). Molekule su: amonijak (NH3), voda (H2O), dušikov monoksid (NO), ugljikov monoksid (CO). Ligandi se klasificiraju prema broju veza koje mogu ostvariti s centralnim atomom. Ligandi s jednim potencijalnim donorom elektrona su monodentatni ligandi s više polidentatni ligandi. Ligandi s više donorskih atoma koji se mogu vezati s centralnim atomom samo preko jednog od njih nazivaju se ambidentatni ligandi. Kelatni ligandi su polidentatni ligandi koji sasvim obuhvate centralni atom poput škara morskog raka.
Lymanova serija je serija linija u spektru vodikova atoma koja nastaje skokom elektrona iz viših energijskih nivoa u normalno stanje s kvantnim brojem n = 1.
Masena koncentracija (γ) jednaka je omjeru mase (mA) otopljene tvari i volumena (V) otopine. SI jedinica za masenu koncentraciju jest kg m-3, ali se u laboratoriju češće upotrebljava g dm-3 koja ima istu brojčanu vrijednost.
Maseni udio (w) jednak je omjeru mase (m) otopljene tvari i zbroja masa (m) svih tvari u otopini. Maseni udio je brojčana, bezdimenzijska veličina i često se izražava kao postotak (% = 1/100), promil, (‰ = 1/1 000) ili dio na milijun, (ppm = 1/1 000 000 - parts per million). Ako nije drugačije naglašeno, udio se odnosi na maseni udio.
Mol (mol) je osnovna SI jedinica za količinu (množinu) tvari.
Mol je količina tvari onog sustava koji sadrži toliko elementarnih jedinki tvari koliko ima atoma u 0.012 kg izotopa ugljika 12 (12C).
Elementarne jedinke uvijek moraju biti specificirane i mogu biti atomi, molekule, ioni, elektroni, neke druge čestice ili određene grupe čestica. U jednom molu (0.012 kg) izotopa ugljika 12 ima 6.022 045×1023 atoma (Avogadrov broj).
Monosaharidi su ugljikohidrati, opće formule Cn(H2O)n, koji se hidrolizom ne mogu rastaviti na jednostavnije ugljikohidrate.
Ovisno o tome sadrže li aldehidnu (RCHO) ili keto skupinu (RCOR’) monosaharidi mogu biti polihidroksi aldehidi ili polihidroksi ketoni. Aldehidna odnosno keto skupina odgovorne su za redukcijska svojstva monosaharida. Monosaharidi se mogu podijeliti i prema broju ugljikovih atoma u ugljikovodičnom lancu pa tako imamo trioze s tri ugljikova atoma, tetroze s četiri, pentoze s pet, heksoze sa šet, heptoze sa sedam itd. Ova dva sustava podjele često se kombiniraju. Primjerice, D-glukoza, polihidroksi aldehid, je aldoheksoza a fruktoza, polihidroksi keton, je ketoheksoza.
Oznake D i L često se koriste da opišu konfiguraciju ugljikohidrata. U Fischerovoj projekcijskoj formuli, karbonilna skupina je uvijek smještena na vrh (u slučaju aldoza) ili što je moguće bliže vrhu (u slučaju ketoza). Ako se OH skupina na asimetričnom ugljikovom atomu najudaljenijem od karbonilne skupine (drugom odozdo) nalazi s desne strane imamo D-šećer, a ako je s lijeve strane, L-šećer. Uz rijetke iznimke svi šećeri u prirodi su D-šećeri.
Otvoreni lanac monosaharida može intramolekularnom ciklizacijom preći u prstenastu strukturu. Ciklizacijom nastaju dva konfiguracijska izomera, točnije dijastereomera (anomera), jer se ciklizacijom planarna karbonilna skupina pretvara u asimetrični ugljikov atom. Anomer kod kojeg je konfiguracija anomernog ugljika ista kao konfiguracija referentnog asimetričnog ugljika u Fischerovoj projekciji označava se kao α-anomer, a ako je konfiguracija različita radi se o β-anomeru.
Plikavci su dobili ime zbog sličnosti rana uzrokovanih onima koje izazivaju opekline. Međutim, plikavci također uzrokuju i velika oštećenja očiju, dišnog sustava i unutrašnjih organa. Uobičajeni plikavac (iperit), 1,1-tio-bis-[2-kloroetan], reagira s velikim brojem bioloških molekula. Učinak plikavaca javlja se sa zadrškom: prvi simptomi se javljaju između 2 i 24 sata nakon izloženosti. Pri sobnoj temperaturi plikavci su tekućine niske hlapljivosti i stabilne su tijekom skladištenja.
Za opću reakciju nekog redoks-sustava
ovisnost elektrodnog potencijala redoks sustava o aktivitetu oksidiranog i reduciranog oblika u otopini daje nam Nernstova jednadžba za elektrodni potencijal:
gdje je E = elektrodni potencijal redoks-sustava
E° = standardni elektrodni potencijal redoks-sustava
R = univerzalna plinska konstanta
T = termodinamička temperatura
F = Faradayeva konstanta
z = broj elektrona koji se izmjenjuju u redoks-reakciji
aO = aktivitet oksidiranog oblika
aR = aktivitet reduciranog oblika
n = stehiometrijski koeficijent oksidiranog oblika
m = stehiometrijski koeficijent reduciranog oblika
Nuklearna magnetska rezonancija (NMR) tip je radiofrekventne spektroskopije koji je temeljen na magnetskom polju koje se stvara vrtnjom električki nabijenih atomskih jezgra. To nuklearno magnetsko polje prouzročeno je interakcijom s vrlo velikim (1 T - 5 T) magnetskim poljem instrumenta. NMR tehnika primjenjuje se za proučavanje elektronske gustoće i kemijskih veza i postala je osnovni istraživački alat za određivanje struktura u organskoj kemiji.
Pravilo okteta kaže da se kemijska svojstva elemenata redovito ponavljaju s porastom atomske mase i da su svojstva svakog osmog elementa slična. Budući da svi plemeniti plinovi osim helija imaju po osam elektrona u svojoj vanjskoj ljusci, takva se stabilna elektronska konfiguracija zove pravilo okteta. U kemijskim reakcijama atomi elemenata imaju tendenciju da reagiraju na način da postignu elektronsku konfiguraciju plemenitog plina koji im je najbliži u periodnom sustavu elemenata. Postoji mnogo iznimaka ovog pravila.
Generalić, Eni. "Atomski broj." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav