Čvrsto agregatno stanje karakterizirano je stalnim oblikom i volumenom. Čestice se nalaze vrlo blizu jedna drugoj i djeluju jedna na drugu velikim privlačnim silama. Čvrsta tijela ne poprimaju oblik posude u koju su stavljena.
Sunčeva ili fotonaponska ćelija jest naprava koja sunčevu svjetlost pretvara u elektricitet. Sve sunčeve ćelije koriste se fotonaponskom pojavom, pa se često zovu fotonaponskim napravama. U većini ovih ćelija osnovni materijal čine poluvodiči, a najčešći je silicij.
Fotonaponska pojava zasniva se na stvaranju pokretnih nositelja naboja - elektrona i šupljina - uslijed apsorpcije fotona svjetlosti. Ovaj par naboja stvara se kad elektron u najvišoj popunjenoj elektronskoj vrpci poluvodiča (valentnoj vrpci) apsorbira foton dostatne energije i prijeđe u praznu elektronsku vrpcu (vodljivu vrpcu). Ovo pobuđenje može se inducirati samo fotonom čija energija odgovara širini energijskog procjepa koji razdvaja valentnu i vodljivu vrpcu. Stvaranje para naboja elektron-šupljina može se pretvoriti u električnu struju u poluvodičkoj napravi, u kojoj je sloj jednog poluvodiča spojen sa slojem drugačijeg poluvodiča ili pak metala. U većini poluvodičkih ćelija ovaj je spoj takozvani p-n spoj, tj. sučeljavaju se p-dopirani i n-dopirani poluvodič. Na sučelju višak pozitivnog naboja (šupljina) u p-dopiranom poluvodičkom sloju i višak negativnog naboja (elektrona) u n-dopiranom poluvodičkom sloju stvara električno polje, koje se prostire s obje strane sučelja. Kad se apsorpcijom fotona u ovom području stvori par elektron-šupljina, ovi naboji se, zbog djelovanja polja, udaljuju od sučelja krećući se u suprotnim smjerovima prema vrhu i dnu ćelije, gdje se nalaze metalne elektrode za skupljanje struje. Elektroda na vrhu (kroz koju se apsorbira svjetlost ) podijeljena je na trake tako da ne zaklanja poluvodički sloj. U većini komercijalnih ćelija p-n spoj se formira unutar monolitnog komada kristalnog silicija. Silicij apsorbira sunčevu svjetlost onih valnih duljina pri kojima je najintenzivnija, od bliskog infracrvenog područja (valnih duljina oko 1200 nm) do ljubičastog (valnih duljina oko 350 nm).
Spontani procesi oni su procesi koji se odvijaju bez vanjskog utjecaja. Vanjske sile nisu potrebne za održavanje procesa iako su ponekad potrebne da bi sam proces započeo. Npr. gorenje drva postaje spontani proces onog trena kad se zapali vatra. Spajanje vode i ugljikova dioksida u drvo i kisik nije spontani proces.
Standardni elektrodni potencijal (E°) (standardni redukcijski potencijl) definiran je mjerenjem relativnih elektrodnih potencijala uz standardne uvjete (aktivitet 1, tlak 101 325 Pa i temperatura 25 °C) prema standardnoj vodikovoj elektrodi. Po konvenciji članak se piše tako da se oksidirani oblik piše prvi. Na primjer,
Elektromotorna sila gornjeg članka je -0.76 V pa je standardni elektrodni potencijal Zn2+|Zn polućelije -0.76 V.
Kada su aktiviteti oksidiranog i reduciranog oblika jednaki 1, tada je logaritamski član u Nernstovoj jednadžbi za elektrodni potencijal jednak nuli i imamo
Terbij je 1843. godine otkrio Carl Gustaf Mosander (Švedska). Ime je dobio po švedskom selu Ytterby gdje je nalazište gadolinita iz kojeg je prvi put izdvojen. To je srebrno sivi, kovki metal koji je toliko mekan da se može rezati nožem. Sporo se oksidira na zraku ali se zapali na zraku ako se zagrije. Reagira s hladnom vodom. Glavni izvor teških lantanoida je gadolinit (Y, Ce, Cr, Be, Fe silikat), euksenit (sadrži Y, Ce, Er, Nb, Ti, U) i ksenotim (YPO4 s nešto Th i lakih lantanoida). Nalaze se i u monacitnim pijescima. Koristi se za izradu fluorescentnih cijevi i zelenog fosfora u katodnim cijevima TV-prijemnika u boji.
Tankoslojna kromatografija (TLC) je tehnika koja služi za odvajanje komponenti iz smjese na temelju njihovog različitog polariteta. Kap uzorka stavi se na ravan list presvučen silicijevom kiselinom. Otapalo koje natapa list nosi uzorak prema rubu lista. Različite komponente prijeći će različitu udaljenost. TLC se koristi za provjeru prisutnosti droge u urinu.
Tulij je 1879. godine otkrio Per Theodore Cleve (Švedska). Ime je dobio po starom nazivu za Skandinavski poluotok - Thule. To je srebrno sivi, mekani i kovki metal koji je stabilan u suhom zraku. Topljiv je u kiselinama. Glavni izvor teških lantanoida je gadolinit (Y, Ce, Cr, Be, Fe silikat), euksenit (sadrži Y, Ce, Er, Nb, Ti, U) i ksenotim (YPO4 s nešto Th i lakih lantanoida). Nalaze se i u monacitnim pijescima. Koristi se za izradu lasera i keramičkih magnetnih materijala.
Vaga s različitom duljinom krakova temelji se na principu poluge. Uporište (oslonac) oko koje se okreće poluga ovog tipa vage nalazi se bliže jednom kraju vage. Vaga je u ravnoteži kada je umnožak sile kojom neka masa djeluje na jedan kraj poluge i duljine kraka (udaljenost od uporišta do točke gdje je sila primijenjena) jednaka umnošku sile primijenjene na drugom kraku i njegove duljine.
Vage s različitom duljinom krakova upotrebljavaju se obično za mjerenje predmeta većih težina.
Van der Waalsova jednadžba jest jednadžba stanja za realne plinove koja ima oblik:
gdje je P tlak, Vm je molarni volumen, T je temperatura, R je molarna plinska konstanta, a i b su karakteristični parametri tvari koji opisuju učinak privlačnih i odbojnih intermolekularnih sila.
Rad je energija potrebna da bi se objekt kretao unatoč suprotstavljajućoj sili. Rad se obično izražava kao sila pomnožena s putem.
Kad konstantna sila F djeluje na česticu tako da ona napravi pomak s, sila vrši rad W nad tom česticom. Ako vektori sile i pomaka tijekom djelovanja sile zatvaraju uvijek isti kut Θ, rad W može se izraziti skalarnim umnoškom ta dva vektora:
Kad sila F na česticu nije konstantna, tj. kad ovisi o položaju čestice, rad sile nad česticom koja se pomakla iz početnog položaja, određenog koordinatama (xp, yp, zp), u konačni položaj, određen koordinatama (xk, yk, zk), dan je izrazom
gdje su Fx, Fy i Fz skalarne komponente sile.
SI jedinica za rad je džul (J); 1 J = 1 Nm = 1 kg m2 s-2. U atomskoj fizici obično se upotrebljava elektron-volt (eV).
Generalić, Eni. "Londonova sila." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav