Za neapsorbirajuće sredine indeks loma (n) jest odnos brzine elektromagnetskog zračenja (svjetlosti) u vakuuumu i brzine zračenja navedene frekvencije u toj sredini.
Elektroni su elementarne čestice s negativnim električnim nabojem od (1.602 189 2±0.000 004 6)×10-19 C i 1/1837 mase protona, odnosno (9.109 534±0.000 047)×10-31 kg.
Elektron je 1897. otkrio engleski fizičar J.J. Thompson (1856.-1940.). On je ustanovio da prilikom provođenja elektrike kroz veoma razrijeđene plinove u Crookesovoj cijevi nastaju nevidljive zrake koje se od katode šire u pravcu i pod čijim utjecajem mnoge tvari fluoresciraju. Te zrake, katodne zrake, sastoje se od negativno nabijenih čestica koje se mogu skrenuti djelovanjem električnog i magnetskog polja.
Elektroni u atomu smješteni su u sedam ljuski oko jezgre, a maksimalni broj elektrona u svakoj ljusci ograničen je fizikalnim zakonima (2n2). Vanjska ljuska nije uvijek popunjena: natrij ima dva elektrona u prvoj ljusci (2×12 = 2), osam u drugoj (2×22 = 8) i samo jedan u trećoj ljusci (2×32 = 18). Elektron iz vanjske ljuske može prijeći u nepopunjenu ljusku drugog elementa ostavljajući atom pozitivno nabijenim. Valentni elektroni su oni elektroni koji mogu biti zarobljeni od drugog atoma ili dijeljeni s drugim atomom.
Elektroni mogu biti izbačeni iz atoma toplinom, svjetlošću, električnom energijom ili bombardiranjem visokoenergetskim česticama. Slobodni elektroni koji se spontano emitiraju raspadom radioaktivnih jezgri nazivaju se β-česticama.
Europij je 1896. godine otkrio Eugene Demarcay (Francuska). Ime mu dolazi od engleske riječi za Europu. To je srebrni, mekani metal, tvrd kao olovo. Snažno reagira s kisikom i vodom. Metal se sam zapali na zraku ako se zagrije iznad 150 °C. Glavni izvor teških lantanoida je gadolinit (Y, Ce, Cr, Be, Fe silikat), euksenit (sadrži Y, Ce, Er, Nb, Ti, U) i ksenotim (YPO4 s nešto Th i lakih lantanoida). Nalaze se i u monacitnim pijescima. Koristi se za izradu lasera i s itrijevim vanadatom kao crveni fosfor u katodnim cijevima TV-prijemnika u boji.
Eksplozivi (lat. explodere - raspasti se) su kemijski spojevi ili smjese koje zagrijavanjem, udarcem, trenjem ili inicijalnim paljenjem u veoma kratkom vremenskom razmaku oslobađaju veliku količinu energije. Kod gotovo svih eksploziva kemijska je reakcija trenutna oksidacija; potrebni kisik nalazi se u molekulama samog eksploziva, npr. sumpor i ugljen u crnom barutu izgaraju na račun kisika kojega u salitri (KNO3) ima oko 50 %. Stoga sumpor i ugljen izgaraju mnogo brže u barutu nego na zraku. Kod nitroglicerina prilikom eksplozije potreban kisik daju atomske grupe NO3-. Brzina izgaranja eksploziva određuje se vremenom koje je potrebno za izgaranje jednog komada eksploziva određene dužine i naziva se brzina detonacije (mjeri se u m/s). Eksplozija je egzotermna reakcija, tj. reakcija pri kojoj se razvija toplina. Ovako razvijena energija izaziva golem učinak zbog trenutačnosti reakcije. Eksplozivi se upotrebljavaju u razne svrhe: u građevinarstvu, rudarstvu i vojnoj industriji. Razne vrste eksploziva mogu se prema primjeni svrstati u tri kategorije: barute, brizantne eksplozive i inicijalne eksplozive.
Relativna vlažnost zraka jest odnos parcijalnog tlaka vodene para u zraku i tlaka zasićene vodene pare pri istoj temperaturi, izraženo u postotcima.
Granica zapaljivosti je područje koncentracija kod kojeg se smjesa zraka i zapaljivog materijala može nekim izvorom paljenja (iskrenjem, električnim lukom ili zagrijavanjem) zapaliti ili eksplodirati. Ovo područje zapaljivosti se često naziva i područje eksplozivnosti i ograničeno je donjom i gornjom granicom zapaljivosti.
Donja granica zapaljivosti je najniža koncentracija zapaljivih plinova ili para koja u smjesi sa zrakom može dovesti do izgaranja i eksplozije. Gornja granica zapaljivosti je najviša koncentracija zapaljivih plinova ili para koja u smjesi sa zrakom može dovesti do izgaranja i eksplozije.
Najšire područje zapaljivosti imaju acetilen (od 2.8 % do 93 %) i vodik (od 4.6 % do 95 %). U području koncentracije između graničnih vrijednosti doći će do sagorijevanja ili do pojave eksplozije, koja je to slabija što su koncentracije plina bliže donjoj ili gornjoj granici eksplozivnosti.
Pjene su dispergirani plinovi u tekućinama ili čvrstim tvarima. Plinski mjehurići mogu biti različitih veličina od koloidnih do makroskopskih (npr. mjehurići od sapunice). Kruh i spužvasta guma primjer su čvrstih pjena. Tekuće se pjene upotrebljavaju u sredstvima za gašenje požara, kremama za brijanje i sl. Pjene se mogu pripremiti mehaničkim ubacivanjem zraka što se često koristi u prehrambenoj industriji, primjerice pri proizvodnji sladoleda.
Fraschov postupak metoda je dobivanja sumpora iz podzemnih nakupina korištenjem naprave s tri koncentrične cijevi što, ulaze jedna u drugu. Pregrijana vodena para prolazi kroz vanjsku cijev kako bi rastalili sumpor. Kroz unutarnju cijev prolazi zrak i tlači rastaljeni sumpor kroz srednju na površinu. Postupak je dobio ime po amerikancu njemačkog porijekla Hermanu Fraschu (1851.-1914.).
Generalić, Eni. "Zrak." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav