Fahrenheitova skala je temperaturna skala u kojoj voda vrije pri 212 a smrzava pri 32 stupnja Fahrenheita. Fahrenheitov stupanj definiran je kao 1/180 temperaturne razlike između standardnog ledišta i standardnog vrelišta vode. Ovu temperaturnu skalu predložio je 1714. njemački fizičar G.D. Fahrenheit (1686.-1736.).
32 °F = 0 °C
212 °F = 100 °C
1 °F =(5/9) °C
T(°C) = (5/9)[T(°F) - 32]
T(°F) = (9/5)T(°C) + 32
Klorinitet (simbol Cl) je definiran kao ukupna količina halida (klorida, bromida i jodida) u 1 kg mora, a da su pri tome jodid i bromid zamijenjeni ekvivalentnom količinom klorida. Kako bi se napravio neovisnim o promjenama atomskih masa halida, klorinitet se danas definira kao masa čistog srebra potrebna da se istalože svi kloridi, bromidi i jodidi pomnožena s 0.37285233. Klorinitet se općenito određuje kako bi se izračunala slanost (salinitet) mora.
Klorinitet se određuje Mohrovom metodom, jednom od najstarijih metoda titracije - uveo ju je 1856. njemački kemičar Karl Friedrich Mohr (1806.-1879.), titracijom uzorka mora sa standardnom otopinom srebrovog nitrata (AgNO3) uz kalijev kromat (K2CrO4) kao indikator.
pri tome se uz AgCl talože još i AgBr i AgI.
Problem kod Mhorove titracije je u tome što srebrov nitrat nije primarni standard. Kako bi ovo izbjegao i omogućio da sva mjerenja saliniteta budu usporediva, predsjednik Međunarodnog povjerenstva za istraživanje mora (ICES, International Council for the Exploration of the Sea), danski fizičar Martin Knudsen (1871.-1949.) definirao je kao standard Normalnu vodu (Eau de mer Normale) stalnog sastava s točno određenim klorinitetom (oko 19.38 ‰). Ova voda je potom korištena za standardizaciju otopine srebrova nitrata. Na taj način sva određivanja kloriniteta referirala su se na isti standard što je omogućilo da svi rezultati budu usporedivi. Upotrebom Normalne vode, Knudsenove pipete i birete za analizu te Hidrografskih tablica dobivali su se rezultati točnosti usporedive onima dobivenim gravimetrijom.
Mjerenjem saliniteta i kloriniteta u devet uzoraka mora iz različitih dijelova svijeta Knudsen je, 1889., došao do empirijske formule za određivanje saliniteta:
Ova formula koristila se do 1962., kada je Zajedničko vijeće za oceanografske tablice i standarde (JPOTS, Joint Panel for Oceanographic Tables and Standards) odredilo novu konstantu proporcionalnosti u Knudsenovoj formuli
Fugacitet (f) je termodinamička funkcija koja se koristi umjesto parcijalnih tlakova kod reakcija u kojima sudjeluju realni plinovi. Za neku komponentu smjese definiran je kao
gdje je μ kemijski potencijal.
Fugacitet plinova jednak je tlaku koji bi plin imao da je idealan. Fugacitet tekućina i čvrstih tvari jednak je fugacitetu para s kojima su u ravnoteži. Aktivitet je odnos fugaciteta i fugaciteta standardnog stanja.
Elektrodni potencijal je potencijal elektrokemijske ćelije u kojoj je ispitivana elektroda spojena kao katoda a standardna vodikova elektroda (E = 0.000 V) kao anoda. Na katodi se uvijek događa redukcija a na anodi oksidacija.
Elektrodni potencijal je po definiciji redukcijski potencijal. Prema IUPAC-ovu dogovoru, izraz elektrodni potencijal namijenjen je isključivo za polureakcije napisane kao redukcije. Predznak elektrodnog potencijala određen je predznakom dotičnog polučlanka spojenog sa standardnom vodikovom elektrodom. Pozitivni predznak upućuje na to da je reakcija spontana u odnosu na standardnu vodikovu elektrodu, tj. da se polučlanak spontano ponaša kao katoda.
Članak za mjerenje elektrodnog potencijala sastoji se od standardne vodikove elektrode (dogovorno se piše lijevo)
i elektrode ispitivanog redoks-sustava (dogovorno se piše desno)
i može se shematski napisati kao
Elektromotorna sila (e.m.f.) ispitivanog redoks sustava jednaka je
Dogovorno je uzeto da je pri p(H2) = 101325 Pa i a(H+) = 1.00, potencijal vodikove elektrode jednak je 0.000 V pri svim temperaturama. Posljedica je takve definicije da se ukupni potencijal svakoga galvanskog članka koji sadrži standardnu vodikovu elektrodu pripisuje drugoj elektrodi
Kjeldahlov postupak je analitička metoda za određivanje dušika u bjelančevinama i nekim drugim organskim spojevima. Postupak je razvio danski kemičar Johan Kjeldahl (1849.-1900.).
U otopinu s uzorkom doda se malo bezvodnog kalijeva sulfata i koncentrirane sulfatne kiseline. Smjesa se zagrijava, često uz prisutnost katalizatora (npr. bakrova sulfata). Dušik se veže u amonijev sulfat iz kojeg se kuhanjem s natrijevim hidroksidom oslobađa amonijak. Oslobođeni amonijak se odvoji destilacijom i skuplja u točno određenom volumenu standardne kiseline. Sadržaj dušika odredi se retitracijom viška kiseline.
Konstanta ravnoteže (K) prvi put se pojavljuje u zakonu o djelovanju masa koji su 1863. formulirali norveški kemičari C.M. Guldberg i P. Waage. Reverzibilna kemijska reakcija prikazana jednadžbom
u ravnoteži je onda kada je brzina napredne reakcije jednaka brzini povratne reakcije.
Konstanta ravnoteže definirana je odnosom ravnotežnih aktiviteta produkata i reaktanata
Kod praktičnih mjerenja često se aktiviteti zamjenjuju koncentracijama
Za reakcije u plinskoj fazi umjesto koncetracija upotrebljavaju se parcijalni tlakovi
Termodinamička konstanta K nema jedinicu, dok jedinica za Kp i Kc ovisi o broju molekula koje se pojavljuju u stehiometrijskoj jednadžbi (a, b, c i d).
Veličina konstante ravnoteže ovisi o temperaturi. Ako je napredna reakcija egzotermna, konstanta ravnoteže smanjuje se povećanjem temperature. Što je veća konstanta ravnoteže neke kemijske reakcije, to je ravnoteža više pomaknuta na stranu stvaranja produkata reakcije. Položaj uspostavljene ravnoteže može se mijenjati, ali ne i konstanta. Sustav u ravnoteži brani se od promjene tako da nastoji poništiti vanjski utjecaj (Le Chatelierov princip).
Konstanta ravnoteže kemijske reakcije izravno je proporcionalna promjeni standardne Gibbsove slobodne energije
Za opću reakciju nekog redoks-sustava
ovisnost elektrodnog potencijala redoks sustava o aktivitetu oksidiranog i reduciranog oblika u otopini daje nam Nernstova jednadžba za elektrodni potencijal:
gdje je E = elektrodni potencijal redoks-sustava
E° = standardni elektrodni potencijal redoks-sustava
R = univerzalna plinska konstanta
T = termodinamička temperatura
F = Faradayeva konstanta
z = broj elektrona koji se izmjenjuju u redoks-reakciji
aO = aktivitet oksidiranog oblika
aR = aktivitet reduciranog oblika
n = stehiometrijski koeficijent oksidiranog oblika
m = stehiometrijski koeficijent reduciranog oblika
Plin se nalazi pod normalnim (ili standardnim) uvjetima kada je: p0 = 105 Pa i T0 = 273.15 K (0 °C). IUPAC je preporučio da se više ne koristi 1 atm (ekvivalent 101 325 Pa) kao normalni tlak. Pri ovim uvjetima, molarni volumen plina Vm0 iznosi 0.022 711 m3 (22.711 L).
Potenciometrijska titracija je volumetrijska metoda kojom se mjeri potencijal između dvije elektrode (referentne i indikatorske elektrode) kao funkcija dodanog volumena reagensa. Temeljni princip potenciometrijske titracije je određivanje nepoznate koncentracije ispitivane otopine titracijom s nekom standardnom otopinom pri čemu skokovita (nagla) promjena potencijala indikatorske elektrode ukazuje i određuje završnu točku titracije.
Instrumentalno određivanje završne točke ima niz prednosti u odnosu na korištenje indikatora. Vizualno određivanje završne točke opterećeno je subjektivnim faktorima, a ne može se koristiti u mutnim i obojenim otopinama. Potenciometrijske metode određivanja završne točke mogu se primijeniti, ne samo za kiselo-bazne titracije već i kod taložnih, redoks i drugih titracija.
Titracijska krivulja ima karakterističan sigmoidalni oblik. Dio krivulje s maksimalnom promjenom potencijala je ekvivalentna točka titracije. Točku ekvivalencije možemo točnije odrediti iz diferencijalne krivulje ΔE/ΔV gdje maksimum krivulje određuje točku ekvivalencije.
Praktični salinitet (praktična slanost), označen kao SP, definirao je JPOTS 1978. Skala praktičnog saliniteta (Practical Salinity Scale 1978, PSS-78) definirana je preko K15, odnosno odnosa električne vodljivosti uzorka mora pri t68 = 15 °C i tlaku od jedne standardne atmosfere i otopine kalijevog klorida (KCl) u kojoj je maseni udio KCl točno 0.0324356 (32.4356 g KCl otopljeno je u 1 kg otopine) pri istom tlaku i temperaturi. Praktični salinitet je bezdimenzijska veličina iako mu ponekad (pogrešno) pripisuju jedinicu "psu". Po definiciji, K15 iznosi točno 1 kada je praktični salinitet jednak 35 (pri gornjim uvjetima vodljivost obje otopine je C(35,1568,0) = 42.914 mS/cm = 4.2914 S/m). Praktični salinitet definiran je slijedećom jednadžbom koja vrijedi za slanosti od 2 do 42:
Kod mjerenja pri temperaturama i tlakovima (dubinama) različitim od standardnih računa se odnos vodljivosti R koji se može prikazati kao produkt tri faktora označena s Rp, Rt i rt:
Za svaku temperaturu različitu od t68 = 15 °C Praktični salinitet dan je kao funkcija od Rt (pri čemu je k = 0.0162). Pri temperaturi t68 = 15 °C Rt postaje K15.
Generalić, Eni. "Standardna devijacija." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav