Slobodni radikali jesu visokoreaktivni molekularni fragmenti koji imaju jedan ili više nesparen elektron. Mogu nastati fotolizom ili pirolizom kada se prekine veza bez stvaranja iona. U formulama, slobodni radikali se obično označavaju točkom (·CH3, ·SnH3, ·Cl). Slobodni radikali sudjeluju kao inicijatori ili intermedijeri u reakcijama oksidacije, fotolize i polimerizacije.
Valentna ljuska je ljuska kojoj odgovara najveći glavni kvantni broj atoma. Valentni elektroni u ovoj su ljusci prosječno najviše udaljeni od jezgre atoma u odnosu na druge elektrone. Često su izravno uključeni u kemijsku reakciju.
Slabe kiseline jesu kiseline koje nepotpuno disociraju u vodenoj otopini. Octena kiselina je primjer slabe kiseline koja disocira prema reakciji
Slaba baza samo djelomično disocira na ione u otopini. Slabe baze su i slabi elektroliti. Amonijak je primjer slabe baze koji disocira prema reakciji
Fugacitet (f) je termodinamička funkcija koja se koristi umjesto parcijalnih tlakova kod reakcija u kojima sudjeluju realni plinovi. Za neku komponentu smjese definiran je kao
gdje je μ kemijski potencijal.
Fugacitet plinova jednak je tlaku koji bi plin imao da je idealan. Fugacitet tekućina i čvrstih tvari jednak je fugacitetu para s kojima su u ravnoteži. Aktivitet je odnos fugaciteta i fugaciteta standardnog stanja.
Galvanski članak (naponski članak, Voltin članak) jest elektrokemijski članak u kojem se kemijska energija spontano pretvara u električnu. Galvanski članak sastoji se od dva polučlanka, a svaki polučlanak od elektrode uronjene u elektrolit. Elektrolit može biti zajednički za obje elektrode ili različit za svaku elektrodu. Dva elektrolita odvajamo polupropusnom membranom ili ih spajamo elektrolitskim mostom. Ako se elektrode povežu nekim vodičem, elektroni putuju kroz vodič od negativnog pola prema pozitivnom polu.
Danielov članak je primjer galvanskog članka. Sastoji se od bakrene i cinkove elektrode, a kao elektrolit služe otopine bakrova(II) sulfata i cinkova sulfata odijeljene polupropusnom membranom. Kada se elektrode spoje električnim vodičem kroz strujni krug će proteći električna struja. Na negativnom polu (cinkovoj elektrodi) zbiva se proces oksidacije A na pozitivnom polu (bakrenoj elektrodi) zbiva se proces redukcije.
Elektromotornu silu galvanskog članka možemo izračunati iz razlike redoks potencijala tvari koja se reducirala (bakra) i tvari koja se oksidirala (cinka).
Galvanski članak može se shematski prikazati upotrebom okomite crte. Uobičajeno je da se oksidirana vrsta piše s lijeve strane.
Ime je dobila u čast talijanskog znanstvenika i liječnika Luigia Galvania (1737.-1798.).
Gibbsova slobodna energija (G) jest energija oslobođena ili apsorbirana u reverzibilnom procesu pri konstantnoj temperaturi i tlaku. Definirana je jednadžbom
gdje je H entalpija, S entropija a T termodinamička temperatura. Naziva se još i Gibbsova energija ili samo slobodna energija.
Promjena Gibbsove slobodne energije, ΔG, određuje smjer kemijske reakcije. Ako je ΔG neke reakcije negativan, reakcija će se spontano odvijati dok se ne uspostavi ravnotežno stanje. Kada je postignuto ravnotežno stanje, onda je ΔG = 0.
Goldschmidtov postupak (termitni postupak) je postupak dobivanja čistih metala redukcijom njihovih oksida aluminijem u prahu. Skoro se svi metalni oksidi mogu reducirati ovom metodom. Glavna iznimka je magnezijev oksid. Termitni postupak razvio je 1893. njemački kemičar Hans Goldschmidt (1861.-1923.).
Goldschmidt je brzo uvidio da se osim dobivanja čistih metala termitni postupak može upotrijebiti i za zavarivanje metala, primjerice željezničkih tračnica. Postupak je poznat kao termitno zavarivanje (aluminotermijsko zavarivanje).
Grafit je alotrop ugljika. Dobar je vodič topline i elektriciteta. U grafitu atomi su povezani u heksagonalne prstenove koji su složeni u slojevima. Kako ovi slojevi lako klize jedan preko drugog grafit se često koristi kao kruto mazivo. Sintetski grafit dobiva se zagrijavanjem smjese gline (aluminijeva silikata) i koksa u procesu koji je izumio američki kemičar Edward Goodrich Acheson (1856.–1931.). U reakciji nastaje silicijev karbid koji pri 4150 °C gubi silicij ostavljajući čisti grafit.
Haberov proces je industrijski postupak sinteze amonijaka iz dušika i vodika:
Reakcija je egzotermna i reverzibilna, tako da se prinos na amonijaku povećava na nižim temperaturama. Brzina reakcije je previše mala na normalnoj temperaturi, pa se reakcija provodi pri optimalnoj temperatura od oko 450 °C. U reakciji se kao katalizator koristi željezo s aluminijevim oksidom kao promotorom. Povišenjem tlaka reakcija se pomiče u smjeru nastajanja amonijaka, pa se koristi tlak od 250 atmosfera. Amonijak se uklanja iz reaktora čime se reakcija pomiče u smjeru nastajanja produkata. Kao izvor vodika u originalnom procesu koristio se vodeni plin, dok se danas koristi vodik dobiven reformiranjem zemnog plina.
Proces je vrlo važan jer je to jedini industrijski način fiksacije dušika iz zraka u svrhu dobivanja umjetnih gnojiva i eksploziva. Postupak je razvio 1908. njemački kemičar Fritza Haber (1868.-1934.), a za industrijsku primjenu prilagodio ga je Carl Bosh (1874.-1940.), te se postupak još naziva Haber-Boshov postupak.
Generalić, Eni. "Reakcija nultog reda." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav