Born-Haberovim kružnim procesom izračunava se energija kristalne rešetke. Ova metoda temelji se na termodinamičkom principu da prilikom prijelaza nekog kemijskog sustava iz jednog stanja u drugo ukupna oslobođena (ili apsorbirana) energija ne ovisi o putu reakcije. Za spoj MX energija kristalne rešetke je entalpija reakcije
Toplina nastajanja kristala spoja MX iz elemenata je entalpija reakcije
Zbrajanjem entalpija za svaki korak procesa nastajanja kristala iz elementa može se izračunati energija kristalne rešetke. Ti koraci jesu:
1) Atomizacija metala
2) Atomizacija nemetala
3) Ionizacija metala
Ovo se dobiva iz energije ionizacije.
4) Ionizacija nemetala
Ovo je elektronski afinitet.
5) Nastajanje kristala
Zbrajanjem procesa od 1 do 5 dobijemo
iz čega se može izračunati energija kristalne rešetke ΔHL.
Francuski fizičar Nicolas Léonard Sadi Carnot (1796.-1832.) opisao je 1824. kružni proces pri kojem se prijelazom topline iz toplijeg spremnika u hladniji spremnik dobiva maksimalni rad. Carnotov kružni proces sastoji se od četiri povratljiva parcijalna procesa
1-2: Izotermna ekspanzija na temperaturi T1 uz dovođenje topline QH.
2-3: Adijabatska ekspanzija do temperature T2.
3-4: Izotermna kompresija na temperaturi T2 uz odvođenje topline QC.
4-1: Adijabatska kompresija nazad do temperature T1.
Izvršeni rad jednak je zbroju izvršenih radova parcijalnih procesa, a prikazan je osjenčanom površinom ograničenom krivuljama koje prikazuju promjene stanja.
Sublimacija je prijelaz tvari iz čvrstog izravno u plinovito stanje bez prethodnog prijelaza u tekućinu. Suhi led (smrznuti CO2) na sobnoj temperaturi sublimira.
Etilendiamintetraoctena kiselina (C10H16N2O8) ili skraćeno EDTA (ethylenediaminetetraacetic acid) heksadentantni je heksadentatni ligand koji tvori komplekse i s prijelaznim metalima i s metalima glavnih skupina. EDTA se koristi kao dinatrijeva sol zbog slabe topljivosti kiseline. Koordinacijski broj EDTA je 6. Negativni ion EDTA4- okruži metalni ion uspostavljajući koordinativne veze sa svih šest koordinacijskih mjesta (četiri na kisikovom i dva na dušikovom atomu).
EDTA se često koristi kao aditiv deterdžentima. Ona stvara kompleks s kalcijevim i magnezijevim ionima čime se poboljšava moć pranja deterdženta. EDTA se upotrebljava kao stabilizator u proizvodnji hrane i kao antikoagulans za krv u bankama krvi. EDTA je najčešći reagens u kompleksometrijskoj titraciji.
Da bi došlo do prijelaza plina u tekuće stanje, potrebno je ili sniziti temperaturu ili smanjiti volumen ili povećati tlak. Iznad kritične temperature nije moguće ukapljiti plin. Za ukapljivanje zraka Lindeovim postupkom koristi se prigušni ili Joule-Thomsonov efekt. Postupak se sastoji u tome da se stlačeni zrak u kompresoru ohladi rashladnom vodom. Tako ohlađeni zrak ekspandira na niži tlak u prigušnom ventilu pri čemu se ohladi, vraća se u kompresor i usput hladi zrak koji će se ekspandirati. Ponavljanjem tog postupka zrak se toliko ohladi da prijeđe u tekuće stanje.
Ionizacija je nastajanje iona. Određena molekula ionizira u otopini, npr. kiselina ionizira kada se otopi u vodi.
Prijelaz elektrona također može izazvati ionizaciju, npr. natrij i klor reagiraju prijenosom valentnog elektrona s natrija na klor te tako nastaju ioni od kojih se sastoji kristalna rešetka natrijeva klorida.
Lantanoidi ili lantanidi su smješteni unutar 6. periode u 3. podljusci. Imaju nepopunjene niže f-podljuske te se stoga nazivaju unutrašnjim prijelaznim elementima ili f-elementima. U skupinu lantanoida spadaju elementi od rednog broja 58. do rednog broja 71., a često se u lantanoide svrstava i lantan (La). Zbog vrlo sličnih svojstava vrlo teško ih je razdvojiti. Dijelimo ih na cerijevu skupinu ili lake lantanoide: cerij (Ce), praseodimij (Pr), neodimij (Nd), prometij (Pm), samarij (Sm), europij (Eu); i itrijevu skupinu ili teške lantanoide: gadolinij (Gd), terbij (Tb), disprozij (Dy), holmij (Ho), erbij (Er), tulij (Tm), iterbij (Yb) i lutecij (Lu). Lantanoidi se ponekad nazivaju i rijetke zemlje. Osim radioaktivnog prometija ostali lantanoidi i nisu tako rijetki. Cerij je primjerice na 26. mjestu najčešćih elementa u zemljinoj kori i ima ga pet puta više nego olova.
Luminiscencija (latinski lumen znači svjetlo) je zajednički naziv za pojave emisije elektromagnetskog zračenja (UV, vidljivog ili IR) atoma ili molekula kao posljedica prijelaza elektrona iz pobuđenog u niže energetsko stanje, obično u osnovno stanje. Kako se pojava svijetljenja odvija bez zračenja topline naziva se i hladno svjetlucanje. Može biti izazvana kemijskim procesom (kemoluminiscencija), biološkim procesom (bioluminiscencija), djelovanjem alfa i ß-zraka (radioluminiscencija), svjetlosti (fotoluminiscencija), električne struje (elektroluminiscencija), topline (termoluminiscencija), mrvljenjem (triboluminiscencija) i sl.
S obzirom na trajanje sekundarnog zračenja luminescencija se dijeli na:
Određene slitine mogu se, metodom ultrabrzog kaljenja iz taline, skrutnuti u amorfnom obliku, bez formiranja kristalne rešetke - takve, amorfne slitine zovu se metalna stakla.
Primjer su dobivanja metanih stakala cirkonija i nikla. Amorfna Zr2Ni slitina dobiva se metodom ultrabrzog hlađenja, kod koje se indukcijski rastaljena slitina izbacuje tlakom inertnog plina iz kvarcne posude na plohu brzo rotirajućeg valjka. Valjak je napravljen od materijala velike toplinske vodljivosti i na njemu se slitina, zbog velike brzine kojom je izbačena, spreša, naglo ohladi i skrutne. Nakon skrućivanja slitina se od valjka odvaja zbog djelovanja centrifugalne sile. Tako se dobivaju dugačke trake amorfne slitine jednolike širine (~1 mm) i debljine (~1 μm) te poprečnog presjeka kojemu svojstva ovise o brzini hlađenja.
Strukturno svojstvo metalnih stakala jest odsustvo uređenja dugog dosega. Na udaljenostima manjim od 1.5 nm postoje određeni tipovi uređenosti pa ta činjenica ne dozvoljava potpunu usporedbu sa strukturom tekućina, kojoj je svojstvena potpuna neuređenost. Struktura metalnih stakala određuje njihova neobična fizikalna svojstva, sasvim različita od svojstava odgovarajućih kristalnih slitina, a vrlo povoljna za primjene u tehnologiji. Mehaničke osobine (čvrstoća, elastičnost, otpornost na koroziju) čine neka stakla pogodnim za izradu kompozitnih materijala. Slitine prijelaznih metala i rijetkih zemalja mogu imati svojstva između mekih i vrlo tvrdih magneta pa se mogu upotrijebiti kao magnetske memorije. Supravodljivi amorfni metali mogu se koristiti za izradu rotora supravodljivih generatora i motora.
Nusseltova značajka (Nu) bezdimenzijska je veličina koja se upotrebljava u mehanici fluida. Definirana je s
gdje je h koeficijent prijelaza topline, l dužina a k koeficijent toplinske vodljivosti.
Generalić, Eni. "Polimorfni prijelaz." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav