Fluor je 1886. godine otkrio Henri Moissan (Francuska). Ime mu dolazi od latinske riječi fluere što znači teći jer se njegov mineral fluorit (CaF2) upotrebljavao za snižavanje točke topljenja. To je svjetložuti do zelenkasti plin s oštrim nadražujućim mirisom. Najreaktivniji je od svih elemenata i može oksidirati gotovo sve što dođe s njim u dodir. Fluor je jako otrovan plin. Nadražuje na dodir. U prirodi se pojavljuje samo u spojevima, od kojih su najvažniji fluorit (CaF2), kriolit (Na3AlF6) i fluorapatit (Ca5(PO4)3F). Dobiva se elektrolizom kalij fluorida u bezvodnom fluorovodiku. Primjenjuje se za punjenje rashladnih uređaja (freon) i polimerizaciju u politetrafluoretilen (PTFE).
Grätzelova sunčeva ćelija je fotoelektrokemijska ćelija koju je razvio Michael Grätzel sa suradnicima. Oponaša djelomice prirodnu sunčevu ćeliju, koja omogućava biljkama da ostvare fotosintezu. U prirodnoj sunčevoj ćeliji molekule klorofila apsorbiraju svjetlost i to najjače u crvenom i plavom dijelu spektra, dok se zelena svjetlost reflektira. Apsorbirana energija dovoljna je za izbacivanje elektrona iz pobuđenog klorofila. U prijenosu tog naboja, sudjeluju potom druge molekule. U Grätzelovoj ćeliji su, također, za stvaranje naboja apsorpcijom svjetlosti i prijenos tog naboja "zaduženi" različiti dijelovi ćelije.
Na vodljivo staklo nanesen je sloj nanokristala poluvodiča TiO2 čija je površina jako velika. Na TiO2 nanesen je fotoosjetljivi pigment koji čine rutenijevi ioni povezani s organskim molekulama koje jako apsorbiraju vidljivu svjetlost. Fotopobuđeni elektroni prelaze s rutenijevih iona na kristalite TiO2, koji ih odvode daleko od iona-donora. Čitav sustav uronjen je u tekući jodidni elektrolit koji preuzima elektrone s elektrode i prenosi ih na rutenijeve ione kako bi se nastavio proces apsorpcije svjetlosti.
Efikasnost ovih ćelija iznosi oko 10 % i raste u difuznoj svjetlosti, tj. za oblačna vremena.
Živa je poznata od davnih vremena (~1500. godine prije Krista). Ime je dobila od latinske riječi hydrargyrum što znači tekuće srebro. To je sjajni, srebrno bijeli metal. Pri sobnoj temperaturi je tekućina. Loše vodi toplinu i električnu struju. Stabilna je na zraku. Ne reagira s lužinama i većinom kiselina. Otapa se samo u oksidirajućim kiselinama. Tekuća živa otapa mnoge metale dajući amalgame. Ovisno o količini otopljenog metala, amalgami mogu biti tekući ili čvrsti. Živine pare su vrlo otrovne. Lako se resorbira čak i preko nepokrivenih dijelova kože. Imaju kronični kumulativni efekt. Organski spojevi žive, kao što je metil-živa, su također jaki otrovi. U prirodi žive ima dvadesetak puta više nego kadmija. Može se pronaći samorodna ili u mineralu cinabaritu (HgS). Klor-alkalne elektrolize su najveći potrošači žive gdje se živa upotrebljava kao katoda kod elektrolize, zbog velikog prenapona vodika na njoj i stvaranja amalgama s produktom. Sa živom se pune termometri, barometri ili se izrađuju lampe koje isijavaju svjetlost bogatu ultraljubičastim zrakama.
Kisik je 1774. godine otkrio Joseph Priestley (Engleska). Ime mu je dao Lavoisiera od grčke riječi oxys što znači oštar ili kiseo i riječi genes što znači tvoriti. To je plin bez boje i mirisa i ekstremno je reaktivan. Stvara okside sa svim ostalim elementima izuzev plemenitih plinova. Kisik je nezapaljivi plin ali podržava gorenje. Nešto je teži od zraka i dobro se otapa u vodi, topljivost mu je oko 3 % (volumna). Javlja se u dvije alotropske modifikacije, kao dvoatomna i kao troatomna molekula (ozon). I jedna i druga su jaka oksidacijska sredstva. Topljivost ozona u vodi je gotovo 50 puta veća nego topljivost dvoatomnog kisika. Kisik je najrasprostranjeniji element Zemljine kore. Skoro polovica mase je kisik, a po broju atoma je brojniji nego svi ostali elementi zajedno. Kisik se industrijski dobiva ili frakcijskom destilacijom ukapljenog zraka ili elektrolizom vode. Najčešće se upotrebljava kao oksidacijsko sredstvo.
U polarografiji, Heyrovsky-Ilkovičeva jednadžba opisuje krivulju ovisnosti jakosti struje o potencijalu (polarografski val) reverzibilnih redoks sustava
gdje je R opća plinska konstanta, T je apsolutna temperatura, F je Faradayeva konstanta, n je broj elektrona izmijenjenih u elektrodnoj reakciji a D i D1 su koeficijenti difuzije. E1/2 je potencijal karakterističan za danu reakciju i osnovni elektrolit (poluvalni potencijal).
Kako bi dobili E1/2 iz gornje jednadžbe nacrtat ćemo graf ovisnosti ln[(id-i)/i] o potencijalu. Vrijednost E1/2 očita se iz grafa u točki u kojoj pravac siječe ordinatu. Ako su procesi na elektrodi reverzibilni iz nagiba pravca (nF/RT) može se izračunati broj izmijenjenih elektrona, n.
Kiseline su vrsta spojeva koji sadrže vodik i disocijacijom u vodi daju pozitivne vodikove ione pri čemu je rezultirajući pH manji od 7. Reakcija za kiselinu HA može se napisati kao
Ustvari, vodikov je ion (proton) solvatiziran pa reakcija disocijacije kiseline izgleda ovako:
Ova definicija kiselina dolazi iz Arrheniusove teorije. Kiseline su tvari čije vodene otopine imaju kiseli okus, korozivne su i mijenjaju boju lakmus-papira u crvenu.
Kiseline možemo podijeliti na jake, koje potpuno disociraju u vodi (npr. sulfatna i kloridna kiselina), i slabe kiseline, koje su samo djelomično disocirane (npr. octena i sumporvodična kiselina). Jakost kiseline ovisi o stupnju disocijacije i izražava se konstantom disocijacije kiseline.
Arrheniusovu definiciju kiselina i baza proširili su J. M. Lowry i J. N. Brønsted 1923. Njihova teorija definira kiselinu kao tvar koja daje proton (proton donor), a bazu kao tvar koja je sposobna primiti proton (proton akceptor). Da bi se neka jedinka ponašala kao kiselina, mora biti prisutan proton akceptor (baza). Lowry-Brønstedova teorija kaže da kad neka kiselina dade proton, nastane konjugirana baza koja može primiti proton.
Prema Lowry-Brønstedovoj predodžbi, kad neka kiselina dade proton, uvijek nastane konjugirana baza koja može primiti proton.
Slično, od svake baze kao rezultat primitka protona nastane konjugirana kiselina.
Primjerice, acetatni ion je konjugirana baza octene kiseline, a amonijev ion je konjugirana kiselina amonijaka.
Što je kiselina konjugiranog kiselo/baznog para slabija, njezina konjugirana baza postaje jača, i obrnuto.
Najopćenitiju definiciju kiselina dao je G. N. Lewis koji sve kemijske vrste koje mogu primiti elektronski par naziva kiselinama. Ova definicija uključuje sve "tradicionalne" kiselo-bazne reakcije, ali sadrži i reakcije koje ne uključuju ione, primjerice
u kojoj je NH3 baza (donor elektronskog para) a BCl3 kiselina (akceptor elektronskog para).
Alkaloidi su skupina složenih organskih spojeva (često heterociklički) bazičnog karaktera koji sadrže dušik i koji se stvaraju u biljnom svijetu. Alkaloidi kao morfij, kokain, atropin, kinin i kofein često se upotrebljavaju u medicini kao analgetici i anestetici. Neki su alkaloidi jaki otrovi, primjerice strihin i konin.
Amperometrija je elektrokemijska tehnika pri kojoj se mjeri struja koja prolazi kroz elektrolitsku ćeliju pri konstantnom potencijalu. Može se između ostalog koristiti za određivanje koncentracije određenih vrsta u otopini.
Anodizacija je postupak prevlačenja predmeta od aluminija i sličnih metala (tzv. ventilni metali) zaštitnim oksidnim filmom kada ih se u elektrolizi spoji kao anodu. Obično se oksidni filmovi na aluminiju boje u dekorativne svrhe.
Generalić, Eni. "Jaki elektrolit." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav