Baterija jest naprava koja pretvara kemijsku energiju u električnu. Proces na kojemu počiva rad baterije uključuje kemijske reakcije u kojima elektroni prelaze s jedne tvari na drugu, putem dvije polu-reakcije, od kojih jedna uključuje gubitak a druga dobitak elektrona. Baterija je elektrokemijski članak, podijeljen u dva polučlanak, a reakcija počinje kad se polučlanci spoje električki vodljivom stazom. Prijelaz elektrona iz jednog u drugi polučlanak odgovara električnoj struji. Svaki polučlanak sadrži i elektrodu. Elektroda koja daje elektrone u strujni krug kad se baterija izbija zove se anoda i negativni je terminal baterije. Elektroda koja, pak, prima elektrone zove se katoda i pozitivni je terminal baterije. Električni strujni krug zatvoren je elektrolitom, električki vodljivom tvari koja je smještena između elektroda i prenosi naboj između njih. U takozvanim mokrim člancima, elektrolit je tekućeg tipa a sadrži otopljene ione, čije gibanje stvara električnu struju; u suhim člancima elektrolit je čvrstog tipa - s mobilnim ionima kao nositeljima naboja, ili s ionskom otopinom unutar čvrste matrice.
Elektrokemijski članak jest članak u kojem se pri odvijanju kemijske reakcije kemijska energija pretvara u električnu ili obrnuto. Sastoji se od dvije elektronski vodljive faze (metal ili poluvodič) koje se zovu elektrode, međusobno povezane ionski vodljivom fazom (vodene i nevodene otopine elektrolita, taline ili ionski vodljive čvrste tvari).
Pri svom prolazu kroz članak struja se mora mijenjati iz elektronske u ionsku i ponovo u elektronsku. Ove promjene vrste vodljivosti popraćene su oksido-redukcijskim reakcijama. Reakcije oksidacije i redukcije se odvijaju istovremeno, ali su prostorno odijeljene, a elektroda na kojoj se zbiva reakcija oksidacije zove se anoda, a elektroda na kojoj se zbiva redukcija jest katoda.
Elektroforeza je tehnika za analizu i separaciju koloida, temeljena na putovanju koloidnih iona pod utjecajem električnog polja. Pozitivne koloidne čestice putovat će prema katodi (negativnoj elektrodi), a negativne prema anodi (pozitivnoj elektrodi). Brzina migracije ovisit će o jakosti polja, naboju čestice i drugim faktorima, kao što su veličina i oblik koloidne čestice.
Veoma značajna je primjena elektroforeze u proučavanju bjelančevina (proteina), gdje se podešavanjem kiselosti otopine može kontrolirati brzina i smjer putovanja bjelančevine.
Gorivi članci su naprave koje pretvaraju kemijsku u električnu energiju. Razlikuju se od baterija po tome što se proces pretvorbe odvija sve dotle dok se u članak dovode gorivo i oksidirajuće sredstvo, dok je baterija napravljena s ograničenom količinom kemikalija, te je ispražnjena kada sve kemikalije izreagiraju. Gorivi članak je galvanski članak u kojem se na elektrodama odvijaju spontane reakcije. Gorivo (uglavnom vodik) oksidira se na anodi, a oksidans (gotovo uvijek kisik ili zrak) reducira se na katodi.
Neki gorivi članci koriste kao elektrolit vodene otopine, on može biti kiseli ili alkalni, a može biti i ionski vodljiva membrana namočena vodenom otopinom. Ovakvi gorivi članci rade na relativno niskim temperaturama, od sobne temperature do temperature vrenja vode. Neki gorivi članci kao elektrolit koriste taline soli (posebno karbonata) i rade na temperaturi od nekoliko stotina Celzijevih stupnjeva. Drugi koriste ionski vodljive čvrste tvari a rade na temperaturama blizu 1 000 °C.
Staklena elektroda je elektroda osjetljiva na vodikove ione. Sastoji se od staklene membrane, unutarnje referentne elektrode i unutarnje otopine. Može se također prirediti i staklena elektroda osjetljiva na natrijeve ione.
Staklena elektroda ima ekstremno velik električni otpor. Membrana tipične staklene elektrode (debljine od 0.03 mm do 0.1 mm) ima električni otpor od 30 MΩ do 600 MΩ). Aktivitet vodikovih iona u unutrašnjoj otopini je stalan. Površina staklene membrane mora biti hidratizirana da bi djelovala kao pH elektroda. kada se staklena membrana uroni u vodenu otopinu na njenoj površini se formira tanki gel sloj pri čemu dolazi do ionske izmjene između iona natrija u kristalnoj rešetki stakla i vodikovog iona. Ista stvar se dešava i na unutrašnjoj strani membrane.
Najjednostavnije objašnjenje rada staklene membrane je da se staklo ponaša kao slaba kiselina (staklo-H).
Aktivitet vodikovih iona u unutrašnjoj otopini je stalan. Kada se na vanjskoj strani staklene membrane promijeni koncentracija vodikovih iona staklo će se protonirati ili deprotonirati. Razlika pH otopina s unutrašnje i vanjske strane staklene membrane stvara elektromotornu silu proporcionalnu toj razlici.
Poluvalni potencijal (E1/2) je potencijal na kojem je struja polarografskog vala jednaka polovici difuzijske struje (id). Kod reverzibilnih sustava poluvalni potencijal karakterističan je za svaku ionsku vrstu pojedinog elementa (ali ovisi o sastavu otopine) pa se E1/2 može koristiti za kvalitativno određivanje (identifikaciju) elektroaktivnih vrsta.
Ion selektivne elektrode (ISE) jesu elektrode čiji je potencijal ovisan o koncentraciji određene ionske vrste u otopini. ISE su često membranske elektrode i koriste se u elektroanalitičkoj kemiji.
Apsorbancija (A) je logaritam omjera intenziteta upadnog zračenja (Po) i propuštenog zračenja (P) kroz uzorak (izuzimajući efekte posude u kojoj je uzorak).
Apsorpcija svjetlosti kroz otopine može se matematički opisati Beer-Lambertovim zakonom
gdje je A apsorbancija na danoj valnoj duljini svjetlosti, ε je molarni apsorpcijski (ekstinkcijski) koeficijent (L mol-1 cm-1), svojstven svakoj molekulskoj vrsti i ovisan o valnoj duljini svjetlosti, b je duljina puta svjetlosti kroz uzorak (cm) a c je koncentracija tvari u otopini (mol L-1).
Aktivitet (a) je djelotvorna koncentracija neke tvari u otopinama elektrolita. U idealnoj otopini na čestice otopljene tvari djeluju samo molekule otapala, dok kod realnih otopina privlačne sile između iona u otopini rastu s povećanjem naboja iona i povećanjem njihove koncentracije, čime se smanjuje efektivna koncentracija iona u otopini. Aktivitet je jednak umnošku koeficijenta aktiviteta (f) i koncentracije (c)
Relativni aktivitet govori nam koliko je puta neka otopina aktivnija od istovrsne referentne otopine. Za standardno referentno stanje uzima se otopina tvari pri beskonačnom razrjeđenju kada je koeficijent aktiviteta jednak jedinici.
Aktivitet i koeficijent aktiviteta bezdimenzijske su veličine. Aktivitet je jednak koncentraciji tek u vrlo razrijeđenim otopinama. Za čvrste tvari uzima se da je aktivitet jednak jedinici.
Zemnoalkalijski metali su elementi 2. skupine periodnog sustava: berilij (Be), magnezij (Mg), kalcij (Ca), stroncij (Sr), barij (Ba) i radij (Ra). U vanjskoj ljusci imaju dva elektrona i uglavnom se pojavljuju u oksidacijskom stanju +2. Svi su metali male gustoće i vrlo reaktivni iako manje od alkalijskih metala. Reaktivnost im raste porastom atomske mase. Berilijev hidroksid je praktično netopljiv u vodi a topljivost ostalih hidroksida raste s porastom atomske mase metala. Nazvani su zemnoalkalijskim jer vodene otopine njihovih oksida ("zemlje") imaju lužnatu (alkalnu) reakciju.
Generalić, Eni. "Ionska jakost otopine." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav