Ako se kutna brzina tijela promijeni od neke početne vrijednosti ωp, koju ima u početnom trenutku tp do konačne ωk, koju ima u trenutku tk, srednja kutna akceleracija tijela definira se kao kvocijent promjene kutne brzine, Δω, i vremenskog intervala, Δt, u kojemu je ta promjena nastala:
Trenutačna kutna akceleracija, α, dobiva se kao granična vrijednost srednje kutne akceleracije kad se Δt približava nuli:
SI jedinica za kutnu akceleraciju je s-2.
Atomi i molekule nemaju oštrih granica. Kao volumen slobodnog atoma obično se definira onaj volumen koji sadrži 90 % elektronskog oblaka. Radijus atoma predstavlja polovicu međuatomske udaljenosti dvaju istovrsnih atoma, koji su u dodiru, ali nisu međusobno povezani ni kovalentnom ni ionskom vezom, već vrlo slabom van der Waalsovom vezom.
Koloidi su sustavi dvije ili više faza u kojima najmanje jedna faza ima čestice dimenzija između 1 nm i 1 μm (10-9 m – 10-6 m). Dimenzije čestica, više od prirode čestica, karakteriziraju koloide. Koloidne čestice se ne mogu odijeliti filtriranjem jer su premalene i prolaze kroz pore filtar papira. Zbog malih dimenzija i male mase koloidne čestice se ne talože, već lebde u otopini, praveći koloidnu otopinu. Takva je otopina naizgled bistra, ali za razliku od prave otopine pokazuje Tyndallov efekt. Koloidne čestice mogu adsorbirat ione iz otopine čime nastaju koloidni ioni. Makromolekule (npr. bjelančevine) donja su granica veličine koloidnih čestica a čestice koje se još ne mogu vidjeti optičkim mikroskopom gornja su granica.
Koloidne čestice mogu biti plinovite, tekuće ili čvrste. Dijelimo ih na:
sole - disperzije čvrstih čestica u tekućini
emulzije - disperzije tekućine u tekućini
gelove - koagulirani oblik koloidnih sustava
aerosole - disperzije čvrstih ili tekućih čestice u plinu
pjene - disperzije plinova u tekućinama ili čvrstim tvarima
U prirodi ima veoma mnogo koloida, a mnoge tvari već po veličini svojih molekula pripadaju koloidima kao što su škrob ili bjelančevine.
Koloidi se mogu pripremiti disperzijom većih čestica ili kondenzacijom molekulskih otopina.
Sustav je područje koje se promata, izdvojeno od ostatka svemira (okoline). Sustav može biti od okoline odijeljen granicama koje spriječavaju prijenos mase (zatvoreni sustav), topline (adijabatski sustav), ili energije (izolirani sustav). Sustav koji izmjenjuje masu s okolinom je otvoreni sustav.
Položaj materijalne točke koja se giba po kružnici sa središtem u ishodištu koordinatnog sustava može se, osim parom koordinata (x,y), odrediti i parom koordinata (r,Θ), pri čemu je r udaljenost točke od ishodišta, a Θ kut koji pravac na kojem leži r zatvara s pozitivnim smjerom x-osi. Ako se položaj točke mijenja tako da se kut promijeni od početnog Θp u trenutku tp do konačnog Θk u trenutku tk, onda je srednja kutna brzina, ωsr, jednaka omjeru kutnog pomaka ΔΘ i vremenskog intervala Δt u kojem je pomak nastao:
Trenutačna kutna brzina ω dobiva se kao granična vrijednost srednje kutne brzine kad se Δt približava nuli.
ωsr i ω su pozitivni za vrtnju u smjeru obrnutom od smjera kazaljke na satu (pri takvoj vrtnji Θ se povećava) a negativni za vrtnju u smjeru kazaljke na satu (pri takvoj vrtnji Θ se smanjuje).
Srednja i trenutačna kutna brzina također se mogu definirati i za kruto tijelo koje se vrti oko neke određene osi.
SI jedinica za kutnu brzinu je s-1. Kut Θ mjeri se u radijanima. Veza radijana i stupnjeva je:
Na primjer, kutna količina gibanja minutne kazaljke na satu je:
Zeta potencijal (ζ) jest potencijal preko granice faza svih čvrstih tijela i tekućina. Osobitose odnosi na potencijal difuznog sloja iona koji okružuju nabijenu koloidnu česticu, i koji je velikim dijelom odgovoran za stabilnost koloida. Također se naziva i elektrokinetički potencijal.
Destilirana voda (lat. destillare - kapati) dobiva se kondenzacijom vodene pare tako da ne sadrži otopljenih čvrstih tvari. Upotrebljava se kao otapalo u farmaciji i kemiji. Destilirana voda u ravnoteži je s ugljikovim dioksidom iz zraka i ima vodljivost oko 0.8×10-6 S cm-1. Ponovljenom destilacijom u vakuukmu može se postići vodljivost od 0.043×10-6 S cm-1 pri 18 °C. Ova granična vodljivost uzrokovana je ionizacijom vode
Hookeov zakon kaže da je deformacija tijela proporcionalna primijenjenoj sili pod uvjetom da se ne prijeđe granica elastičnosti tijela. Kada se sila ukloni tijelo će se vratiti u svoj prvobitni oblik. Zakon je otkrio engleski fizičar Robert Hook 1676.
Ako se tijelo na elastičnoj opruzi pomakne iz ravnotežnog položaja, tj. ako se opruga rastegne ili stisne, djelovat će povratna sila (elastična sila opruge), koja će nastojati tijelo vratiti u ravnotežni položaj. Iznos te sile je proporcionalan pomaku tijela iz ravnotežnog položaja. Dakle, ako je pomak x, povratna sila je:
a koeficijent proporcionalnosti k je konstanta opruge (ovisi o njenim dimenzijama, obliku i materijalu od kojega je izrađena).
Ilkovičeva jednadžba je relacija koja se koristi u polarografiji a daje odnos između difuzijske struje (id) i koncentracije (c) depolarizatora, tj difundirajuće elektroaktivne vrste koja se reducira ili oksidira na kapajućoj živinoj elektrodi. Jednadžbu je 1934. izveo slovački fizičar Dionýz Ilkovič (1907.-1980.) primjenom Fickovih zakona difuzije.
gdje je k konstanta Ilkovičeve jednadžbe koja uključuje Faradayevu konstantu, π i gustoću žive i iznosi 708 za maksimalnu a 607 za prosječnu graničnu struju, D je koeficijent difuzije depolarizatora u danom mediju (cm2/s), n je broj elektrona izmijenjenih na elektrodi, m je brzina istjecanja žive kroz kapilaru (mg/sec), t je vrijeme kapanja a c je koncentracija depolarizatora (mol/cm3).
Mikroskop je naprava koja stvara uvećanu sliku malih objekata. Optički (svjetlosni mikroskop) koristi vidljivu svjetlost i sustav leća za prikazivanje uvećane slike objekta. Tipično povećanje optičkog mikroskopa je 1500× ("1500 puta") s teoretskom granicom razlučivosti od 200 nm. Za razliku od svjetlosnih, elektronski mikroskopi koriste prolazak elektronsko snopa kroz, ili preko površine uzorka. Kako elektronski snop ima mnogo manju valnu duljinu od svjetlosti s elektronskim mikroskopom mogu se vidjeti objekti manji od 2 nm.
Generalić, Eni. "Granica zapaljivosti." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav