Dijaliza (grč. razrješavanje), postupak razdvajanja tvari iz otopine na temelju razlika u sposobnosti difuzije kroz polupropusne membrane (pergament, nitroceluloza, životinjske opne i sl.). Kroz takve membrane prolaze otopljene tvari a zaostaju čestice koloidnih dimenzija. Na taj se način iz otopine mogu odijeliti niskomolekularni od visokomolekularnih spojeva koji kroz pore membrane ne mogu proći. Postupak je vrlo spor pa se ubrzava primjenom električnog polja - elektrodijaliza.
Električni dvosloj predstavlja strukturu naboja koji se akumulira uz elektrodnu površinu kada se elektroda uroni u elektrolitnu otopinu. Višak naboja na elektrodnoj površini kompenzira se viškom iona suprotnog naboja na strani otopine. Količina naboja funkcija je elektrodnog potencijala. Ovakva struktura predstavlja u biti kondenzator. Postoji nekoliko teorijskih modela koji opisuju strukturu dvosloja. Tri najčešća jesu Helmholtzov, Gouy-Chapmanov i Gouy-Chapman-Sternov model.
Elektrogravimetrija je elektroanalitička tehnika kojom se tvar koja treba biti određena (obično metal) elektrodeponira na elektrodu izvaganu prije i poslije eksperimenta. Potencijal elektrode treba se pažljivo odabrati kako bi bili sigurni da će se na elektrodi istaložiti samo ona tvar koju određujemo.
Elektroforeza je tehnika za analizu i separaciju koloida, temeljena na putovanju koloidnih iona pod utjecajem električnog polja. Pozitivne koloidne čestice putovat će prema katodi (negativnoj elektrodi), a negativne prema anodi (pozitivnoj elektrodi). Brzina migracije ovisit će o jakosti polja, naboju čestice i drugim faktorima, kao što su veličina i oblik koloidne čestice.
Veoma značajna je primjena elektroforeze u proučavanju bjelančevina (proteina), gdje se podešavanjem kiselosti otopine može kontrolirati brzina i smjer putovanja bjelančevine.
Faradayevi zakoni elektrolize su dva zakona koja je formulirao britanski kemičar i fizičar Michael Faraday (1791.-1867.):
1. Količina tvari koja se izluči na elektrodi proporcionalna je količini naboja (Q = I·t) koja je protekla tijekom elektrolize.
gdje je z = broj elektrona koji se izmijeni u reakciji a F = Faradayeva konstanta i iznosi 96 487 C mol-1.
2. Mase elemenata koje se izluče s istom količinom struje su direktno proporcionalnu njihovim kemijskim ekvivalentima.
Prolaskom struje od 96 487 C u prvom elektrolizeru razvit će se 1 mol Ag i 1/4 mol O2 a u drugom 1/2 mol Cu i 1/4 mol O2. Relevantne polureakcije su
Fehlingova otopina služi za određivanje reduciranog šećera i aldehida u otopini. Razvijena od strane njemačkog kemičara Hermann Christian von Fehlinga (1812.-1885.). Iste količine Fehlingove A otopine (bakrov(II) sulfat) i B otopine (natrijev tartarat) dodaju se u ispitivani uzorak. Nakon kuhanja pozitivni rezultat indicira crvena boja nastalog Cu2O.
Geigerov brojač (Geiger Millerov brojač) uređaj je za određivanje i mjerenje ionizirajuće radijacije. Sastoji se od cijevi s plinom pri niskom tlaku (obično argon ili neon s metanom) u kojoj se nalaze cilindrična katoda kroz čiji centar prolazi anoda u obliku tanke žice. Između elektroda narinuta je razlika potencijala od oko 1 000 V. Kroz prikladan otvor (prozor) u cijev ulazi ionizirana čestica ili foton izazivajući nastanak iona a jaka potencijalna razlika će ga usmjeriti na odgovarajuću elektrodu što će izazvati lančanu ionizaciju. Konačni strujni puls može se brojati odgovarajućim elektronskim krugom ili jednostavno preusmjeriti na zvučnik instrumenta. Uređaj je izmislio 1908. njemački fizičar Hans Geiger (1882.-1945.), a 1928. zajedno s W. Mullerom ga je unaprijedio.
Goldschmidtov postupak (termitni postupak) je postupak dobivanja čistih metala redukcijom njihovih oksida aluminijem u prahu. Skoro se svi metalni oksidi mogu reducirati ovom metodom. Glavna iznimka je magnezijev oksid. Termitni postupak razvio je 1893. njemački kemičar Hans Goldschmidt (1861.-1923.).
Goldschmidt je brzo uvidio da se osim dobivanja čistih metala termitni postupak može upotrijebiti i za zavarivanje metala, primjerice željezničkih tračnica. Postupak je poznat kao termitno zavarivanje (aluminotermijsko zavarivanje).
Grätzelova sunčeva ćelija je fotoelektrokemijska ćelija koju je razvio Michael Grätzel sa suradnicima. Oponaša djelomice prirodnu sunčevu ćeliju, koja omogućava biljkama da ostvare fotosintezu. U prirodnoj sunčevoj ćeliji molekule klorofila apsorbiraju svjetlost i to najjače u crvenom i plavom dijelu spektra, dok se zelena svjetlost reflektira. Apsorbirana energija dovoljna je za izbacivanje elektrona iz pobuđenog klorofila. U prijenosu tog naboja, sudjeluju potom druge molekule. U Grätzelovoj ćeliji su, također, za stvaranje naboja apsorpcijom svjetlosti i prijenos tog naboja "zaduženi" različiti dijelovi ćelije.
Na vodljivo staklo nanesen je sloj nanokristala poluvodiča TiO2 čija je površina jako velika. Na TiO2 nanesen je fotoosjetljivi pigment koji čine rutenijevi ioni povezani s organskim molekulama koje jako apsorbiraju vidljivu svjetlost. Fotopobuđeni elektroni prelaze s rutenijevih iona na kristalite TiO2, koji ih odvode daleko od iona-donora. Čitav sustav uronjen je u tekući jodidni elektrolit koji preuzima elektrone s elektrode i prenosi ih na rutenijeve ione kako bi se nastavio proces apsorpcije svjetlosti.
Efikasnost ovih ćelija iznosi oko 10 % i raste u difuznoj svjetlosti, tj. za oblačna vremena.
Polučlanak je dio galvanskog članka u kojem dolazi do oksidacije ili do redukcije elementa u dodiru s vodom ili vodenom otopinom jednog od njegovih spojeva.
Generalić, Eni. "Elektroda trećeg reda." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav