Galvaniziranje je postupak nanašanja metalne prevlake na predmet upotrebom elektrolize. Predmet se uroni u otopinu koja sadrži sol metala koji se nanaša i spoji na negativni pol baterije. Pozitivni metalni ioni putuju prema katodi (predmetu) na kojoj se reduciraju do elementarnog stanja stvarajući na predmetu tanki metalni film.
Primjerice, posrebrenjivanje mesinganih ili niklenih predmeta radi se u otopini srebrovih iona. Predmeti se spoje kao katoda i urone u otopinu a kao anoda uzme se čistog srebro. Otopina je smjesa srebrova nitrata i kalijeva cijanida koji smanjuje koncentraciju srebrovih iona čime se poboljšava kvaliteta galvaniziranja. Reakcije na elektrodama su:
Konstanta ravnoteže (K) prvi put se pojavljuje u zakonu o djelovanju masa koji su 1863. formulirali norveški kemičari C.M. Guldberg i P. Waage. Reverzibilna kemijska reakcija prikazana jednadžbom
u ravnoteži je onda kada je brzina napredne reakcije jednaka brzini povratne reakcije.
Konstanta ravnoteže definirana je odnosom ravnotežnih aktiviteta produkata i reaktanata
Kod praktičnih mjerenja često se aktiviteti zamjenjuju koncentracijama
Za reakcije u plinskoj fazi umjesto koncetracija upotrebljavaju se parcijalni tlakovi
Termodinamička konstanta K nema jedinicu, dok jedinica za Kp i Kc ovisi o broju molekula koje se pojavljuju u stehiometrijskoj jednadžbi (a, b, c i d).
Veličina konstante ravnoteže ovisi o temperaturi. Ako je napredna reakcija egzotermna, konstanta ravnoteže smanjuje se povećanjem temperature. Što je veća konstanta ravnoteže neke kemijske reakcije, to je ravnoteža više pomaknuta na stranu stvaranja produkata reakcije. Položaj uspostavljene ravnoteže može se mijenjati, ali ne i konstanta. Sustav u ravnoteži brani se od promjene tako da nastoji poništiti vanjski utjecaj (Le Chatelierov princip).
Konstanta ravnoteže kemijske reakcije izravno je proporcionalna promjeni standardne Gibbsove slobodne energije
Fluor je 1886. godine otkrio Henri Moissan (Francuska). Ime mu dolazi od latinske riječi fluere što znači teći jer se njegov mineral fluorit (CaF2) upotrebljavao za snižavanje točke topljenja. To je svjetložuti do zelenkasti plin s oštrim nadražujućim mirisom. Najreaktivniji je od svih elemenata i može oksidirati gotovo sve što dođe s njim u dodir. Fluor je jako otrovan plin. Nadražuje na dodir. U prirodi se pojavljuje samo u spojevima, od kojih su najvažniji fluorit (CaF2), kriolit (Na3AlF6) i fluorapatit (Ca5(PO4)3F). Dobiva se elektrolizom kalij fluorida u bezvodnom fluorovodiku. Primjenjuje se za punjenje rashladnih uređaja (freon) i polimerizaciju u politetrafluoretilen (PTFE).
Molekule vode sastavljene su od dva atoma vodika i jednog atoma kisika (H2O). Ako se vodikovi atomi u molekuli vode zamijene s deuterijevim atomima nastat će teška voda (D2O). Deuterij se razlikuje od vodika po tome što ima jedan neutron više u jezgri atoma. Udio teške vode u normalnoj vodi je približno 1:5000 i može se koncentrirati elektrolizom. Teška voda ima i više vrelište (101.4 °C) i više ledište (3.6 °C) od normalne vode. Teška voda je 1.11 puta (20/18=1.11) teža od obične vode.
Vodik je 1766. godine otkrio Sir Henry Cavendish (Engleska). Ime mu je dao Lavoisie od grčkih riječi hydro što znači voda i genes što znači tvoriti. To je plin bez boje i mirisa, netopljiv u vodi. Lako difundira kroz sve materijale. Zapaljiv je i pravi eksplozivne smjese u zraku. Zapaljen na zraku gori svijetlim vrućim plamenom dajući vodenu paru. Na povišenoj temperaturi lako se spaja s kisikom, sumporom i halogenim elementima. Procjenjuje se da 90 % svih atoma, odnosno skoro 3/4 mase svemira, otpada na vodik. Sve zvijezde, pa i Sunce, sastavljene su uglavnom od vodika (w>90 %). Vodik se u prirodi rijetko nalazi u elementarnom stanju, samo u višim slojevima atmosfere ili u vulkanskim plinovima. Uglavnom je vezan u spojevima od kojih su najrašireniji voda (H2O), amonijak (NH3) i razni organski spojevi. Čisti vodik se najčešće dobiva elektrolizom vode. Laboratorijski se dobiva reakcijom sulfatne kiseline i elementarnog cinka. Industrijski se dobiva prevođenjem vodene pare preko užarenog koksa. Upotrebljava se za sintezu amonijaka, hidriranje ugljena i ulja, proizvodnju kloridne kiseline i kao redukcijsko sredstvo.
Jednadžba stanja idealnog plina izvedena je kombinacijom Boyle-Mariotteova, Charles-Gay-Lussacova i Avogadrova zakona. Stanje idealnog plina određeno je tlakom, volumenom, množinom i temperaturom. Njihova međusobna ovisnost dana je jednadžbom
gdje je p tlak, V molarni volumen, T temperatura a R opća plinska konstanta s vrijednošću 8.314 JK-1mol-1).
Idealna otopina je otopina kod koje su interakcije između molekula otopljene tvari i između otopljene tvari i otapala jednake. Idealne otopine ponašaju se u skladu s Raoultovim zakonom pri svim temperaturama i koncentracijama, a realne otopine tek pri jako velikim razrjeđenjima.
Kad se dva referentna sustava gibaju jedan u odnosu na drugi konstantnom brzinom zovemo ih inercijskim referentnim sustavima. Promatrači iz dva inercijska referentna sustava načelno mjere različite brzine nekog objekta koji se giba. Međutim, mjere istu akceleraciju tog objekta. Zakoni fizike moraju biti istog oblika u svim inercijskim sustavima (načelo invarijantnosti).
Živa je poznata od davnih vremena (~1500. godine prije Krista). Ime je dobila od latinske riječi hydrargyrum što znači tekuće srebro. To je sjajni, srebrno bijeli metal. Pri sobnoj temperaturi je tekućina. Loše vodi toplinu i električnu struju. Stabilna je na zraku. Ne reagira s lužinama i većinom kiselina. Otapa se samo u oksidirajućim kiselinama. Tekuća živa otapa mnoge metale dajući amalgame. Ovisno o količini otopljenog metala, amalgami mogu biti tekući ili čvrsti. Živine pare su vrlo otrovne. Lako se resorbira čak i preko nepokrivenih dijelova kože. Imaju kronični kumulativni efekt. Organski spojevi žive, kao što je metil-živa, su također jaki otrovi. U prirodi žive ima dvadesetak puta više nego kadmija. Može se pronaći samorodna ili u mineralu cinabaritu (HgS). Klor-alkalne elektrolize su najveći potrošači žive gdje se živa upotrebljava kao katoda kod elektrolize, zbog velikog prenapona vodika na njoj i stvaranja amalgama s produktom. Sa živom se pune termometri, barometri ili se izrađuju lampe koje isijavaju svjetlost bogatu ultraljubičastim zrakama.
Za opću reakciju nekog redoks-sustava
ovisnost elektrodnog potencijala redoks sustava o aktivitetu oksidiranog i reduciranog oblika u otopini daje nam Nernstova jednadžba za elektrodni potencijal:
gdje je E = elektrodni potencijal redoks-sustava
E° = standardni elektrodni potencijal redoks-sustava
R = univerzalna plinska konstanta
T = termodinamička temperatura
F = Faradayeva konstanta
z = broj elektrona koji se izmjenjuju u redoks-reakciji
aO = aktivitet oksidiranog oblika
aR = aktivitet reduciranog oblika
n = stehiometrijski koeficijent oksidiranog oblika
m = stehiometrijski koeficijent reduciranog oblika
Generalić, Eni. "Faradayevi zakoni elektrolize." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav