Kiseline su vrsta spojeva koji sadrže vodik i disocijacijom u vodi daju pozitivne vodikove ione pri čemu je rezultirajući pH manji od 7. Reakcija za kiselinu HA može se napisati kao
Ustvari, vodikov je ion (proton) solvatiziran pa reakcija disocijacije kiseline izgleda ovako:
Ova definicija kiselina dolazi iz Arrheniusove teorije. Kiseline su tvari čije vodene otopine imaju kiseli okus, korozivne su i mijenjaju boju lakmus-papira u crvenu.
Kiseline možemo podijeliti na jake, koje potpuno disociraju u vodi (npr. sulfatna i kloridna kiselina), i slabe kiseline, koje su samo djelomično disocirane (npr. octena i sumporvodična kiselina). Jakost kiseline ovisi o stupnju disocijacije i izražava se konstantom disocijacije kiseline.
Arrheniusovu definiciju kiselina i baza proširili su J. M. Lowry i J. N. Brønsted 1923. Njihova teorija definira kiselinu kao tvar koja daje proton (proton donor), a bazu kao tvar koja je sposobna primiti proton (proton akceptor). Da bi se neka jedinka ponašala kao kiselina, mora biti prisutan proton akceptor (baza). Lowry-Brønstedova teorija kaže da kad neka kiselina dade proton, nastane konjugirana baza koja može primiti proton.
Prema Lowry-Brønstedovoj predodžbi, kad neka kiselina dade proton, uvijek nastane konjugirana baza koja može primiti proton.
Slično, od svake baze kao rezultat primitka protona nastane konjugirana kiselina.
Primjerice, acetatni ion je konjugirana baza octene kiseline, a amonijev ion je konjugirana kiselina amonijaka.
Što je kiselina konjugiranog kiselo/baznog para slabija, njezina konjugirana baza postaje jača, i obrnuto.
Najopćenitiju definiciju kiselina dao je G. N. Lewis koji sve kemijske vrste koje mogu primiti elektronski par naziva kiselinama. Ova definicija uključuje sve "tradicionalne" kiselo-bazne reakcije, ali sadrži i reakcije koje ne uključuju ione, primjerice
u kojoj je NH3 baza (donor elektronskog para) a BCl3 kiselina (akceptor elektronskog para).
Aktivitet (a) je djelotvorna koncentracija neke tvari u otopinama elektrolita. U idealnoj otopini na čestice otopljene tvari djeluju samo molekule otapala, dok kod realnih otopina privlačne sile između iona u otopini rastu s povećanjem naboja iona i povećanjem njihove koncentracije, čime se smanjuje efektivna koncentracija iona u otopini. Aktivitet je jednak umnošku koeficijenta aktiviteta (f) i koncentracije (c)
Relativni aktivitet govori nam koliko je puta neka otopina aktivnija od istovrsne referentne otopine. Za standardno referentno stanje uzima se otopina tvari pri beskonačnom razrjeđenju kada je koeficijent aktiviteta jednak jedinici.
Aktivitet i koeficijent aktiviteta bezdimenzijske su veličine. Aktivitet je jednak koncentraciji tek u vrlo razrijeđenim otopinama. Za čvrste tvari uzima se da je aktivitet jednak jedinici.
Koeficijent aktiviteta (γ ili f) pokazuje odstupanje otopine od idealnog ponašanja. Koeficijent aktiviteta nekog iona opada s porastom koncentracije i naboja svih prisutnih iona u otopini. Tek kod vrlo razrijeđenih otopina koeficijent aktiviteta približava se jedinici. U jako razrijeđenim otopinama, kod kojih je m manje od 0.01, za približno određivanje koeficijenta aktiviteta može se upotrijebiti Debye-Huckelov granični zakon
gdje je γi = koeficijent aktiviteta vrste i, z = naboj iona a μ = ionska jakost otopine.
Koeficijent aktiviteta neelektrolita, odnosno neutralnih molekula jednak je jedinici.
Zemnoalkalijski metali su elementi 2. skupine periodnog sustava: berilij (Be), magnezij (Mg), kalcij (Ca), stroncij (Sr), barij (Ba) i radij (Ra). U vanjskoj ljusci imaju dva elektrona i uglavnom se pojavljuju u oksidacijskom stanju +2. Svi su metali male gustoće i vrlo reaktivni iako manje od alkalijskih metala. Reaktivnost im raste porastom atomske mase. Berilijev hidroksid je praktično netopljiv u vodi a topljivost ostalih hidroksida raste s porastom atomske mase metala. Nazvani su zemnoalkalijskim jer vodene otopine njihovih oksida ("zemlje") imaju lužnatu (alkalnu) reakciju.
Amperometrija je elektrokemijska tehnika pri kojoj se mjeri struja koja prolazi kroz elektrolitsku ćeliju pri konstantnom potencijalu. Može se između ostalog koristiti za određivanje koncentracije određenih vrsta u otopini.
Anionski izmjenjivači zamjenjuju anione iz otopine s OH- ionima. U svojoj strukturi imaju grupe bazičnog karaktera (-NH2, -NRH, -NR2, -NR3+).
Baterijska kiselina je otopina sumporne kiseline koncentracije 6 mol L-1 a koristi se kao elektrolitska otopina u olovnim akumulatorima.
Količinska ili množinska koncentracija (c) otopine omjer je količine otopljene tvari (nA) i volumena (V) otopine. Jedinica koncentracije jest mol m-3 ali se više upotrebljava decimalna SI jedinica mol dm-3 (ponekad se označava s M). Koncentracija se označava oznakom c uz naznaku jedinke na koju se koncentracija odnosi ili se označava stavljanjem kemijske formule u uglatu zagradu, npr. cHCl ili c(HCl) ili [HCl].
Generalić, Eni. "Pufer otopina." Englesko-hrvatski kemijski rječnik & glosar. 29 June 2022. KTF-Split. {Datum pristupa}. <https://glossary.periodni.com>.
Glosar
Periodni sustav